cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A378194 Rectangular array, read by descending antidiagonals: row n shows the integers m such that the number of primes of the form 4k+3 (including multiplicities) that divide m is n-1.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 18, 27, 8, 11, 21, 54, 81, 10, 12, 33, 63, 162, 243, 13, 14, 36, 99, 189, 486, 729, 16, 15, 42, 108, 297, 567, 1458, 2187, 17, 19, 45, 126, 324, 891, 1701, 4374, 6561, 20, 22, 49, 135, 378, 972, 2673, 5103, 13122, 19683, 25, 23, 57, 147, 405, 1134, 2916, 8019, 15309, 39366, 59049, 26, 24, 66, 171, 441, 1215, 3402, 8748, 24057, 45927, 118098, 177147
Offset: 1

Views

Author

Clark Kimberling, Jan 14 2025

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Corner:
      1     2     4     5     8     10     13     16      17
      3     6     7    11    12     14     15     19      22
      9    18    21    33    36     42     45     49      57
     27    54    63    99   108    126    135    147     171
     81   162   189   297   324    378    405    441     513
    243   486   567   891   972   1134   1215   1323    1539
    729  1458  1701  2673  2916   3402   3645   3969    4617
   2187  4374  5103  8019  8748  10206  10935  11907   13851
		

Crossrefs

Cf. A065339, A002144, A002145, A376961, A378193, A072437 (row 1), A000244 (column 0), A025192 (column 1).

Programs

  • Maple
    A378194 := proc(n, k)
        option remember;
        local a;
        if k = 0 then
            0;
        else
            for a from procname(n, k-1)+1 do
                if A065339(a) = n-1 then
                    return a;
                end if;
            end do;
        end if;
    end proc:
    seq(seq( A378194(n, d-n), n=1..d-1), d=2..10) ; # R. J. Mathar, Jan 28 2025
  • Mathematica
    u = Map[Map[#[[1]] &, #] &, GatherBy[
        SortBy[Map[{#, 1 + Count[Map[IntegerQ[(# - 3)/4] && PrimeQ[#] &,
                 Flatten[Map[ConstantArray[#[[1]], #[[2]]] &,
                 FactorInteger[#]]]], True]} &,
          Range[24000]], #[[2]] &], #[[2]] &]];
    r[m_] := Take[u[[m]], 10];
    w[m_, n_] := r[m][[n]];
    Grid[Table[w[m, n], {m, 1, 8}, {n, 1, 9}]]   (* array *)
    Table[w[n - k + 1, k], {n, 8}, {k, n, 1, -1}] // Flatten  (* sequence *)
    (* Peter J. C. Moses, Nov 19 2024 *)

Extensions

Definition corrected. - R. J. Mathar, Jan 28 2025

A371014 The number of divisors of n that are the sum of 2 squares.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 2, 4, 1, 3, 2, 2, 2, 5, 2, 4, 1, 6, 1, 2, 1, 4, 3, 4, 2, 3, 2, 4, 1, 6, 1, 4, 2, 6, 2, 2, 2, 8, 2, 2, 1, 3, 4, 2, 1, 5, 2, 6, 2, 6, 2, 4, 2, 4, 1, 4, 1, 6, 2, 2, 2, 7, 4, 2, 1, 6, 1, 4, 1, 8, 2, 4, 3, 3, 1, 4, 1, 10, 3, 4, 1, 3, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 3, Floor[e/2] + 1, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1]%4 == 3, f[i, 2]\2 + 1, f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = floor(e/2) + 1 if p == 3 (mod 4), and e+1 otherwise.
a(n) = A000005(n) if and only if n is in A072437.
a(n) = A046951(n) if and only if n is in A004614.
a(n) = 1 if and only if n is in A167181.

A382092 Values taken by gcd(a^2 + b^2 + c^2, a*b*c), where a, b, c are positive integers.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 27, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 54, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 108, 109, 113, 116, 117, 121, 122, 125, 128, 130, 135, 136, 137
Offset: 1

Views

Author

Yifan Xie, Mar 29 2025

Keywords

Comments

Numbers k such that for each prime p == 3 (mod 4) dividing k, v_p(k) > 1, where v_p(k) is the p-valuation of k.

Examples

			3 is not a term because triples (a, b, c) of positive integers such that gcd(a^2 + b^2 + c^2, a*b*c) = 3 do not exist.
9 is a term because gcd(3^2 + 3^2 + 9^2, 3*3*9) = gcd(99, 81) = 9.
		

Crossrefs

Cf. A002145.
A001481 and A072437 are subsequences.

Programs

  • PARI
    isok(n) = {
        my(f = factor(n));
        for(i=1, #f[,1], if(f[i, 1] % 4 == 3 && f[i, 2] <= 1, return(0)));
        return(1);
    }
Previous Showing 11-13 of 13 results.