cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A198792 Triangle T(n,k), read by rows, given by (0,1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 8, 16, 12, 4, 1, 0, 16, 40, 40, 20, 5, 1, 0, 32, 96, 120, 80, 30, 6, 1, 0, 64, 224, 336, 280, 140, 42, 7, 1, 0, 128, 512, 896, 896, 560, 224, 56, 8, 1, 0, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2011

Keywords

Comments

Row sums are A124302.
Variant of A119468.

Examples

			Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 4, 6, 3, 1
0, 8, 16, 12, 4, 1
0, 16, 40, 40, 20, 5, 1
		

Crossrefs

Formula

T(n,k) = A097805(n,k)*A011782(n-k).
Sum_{0<=k<=n} T(n,k)*2^k = A063376(n-1).
G.f.: (1-(y+2)*x+y*x^2)/((1-x*y)*(1-x*(y+2))).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n>2, T(0,0) = T(1,1) = T(2,2) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013
Previous Showing 11-11 of 11 results.