A287817
Number of nonary sequences of length n such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 9, 67, 501, 3747, 28025, 209609, 1567743, 11725731, 87701095, 655949055, 4906086571, 36694443381, 274451368893, 2052723708275, 15353082914309, 114831408642039, 858866749063989, 6423783365292409, 48045861327359751, 359352839194448551, 2687733333725785179
Offset: 0
For n=2 the a(2) = 81 - 14 = 67 sequences contain every combination except these fourteen: 02,20,13,31,24,42,35,53,46,64,57,75,68,86.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{8, -1, -23, 10, 1}, {1, 9, 67 , 501, 3747}, 40]
-
def a(n):
if n in [0, 1, 2, 3, 4]:
return [1, 9, 67 , 501, 3747][n]
return 8*a(n-1)-a(n-2)-23*a(n-3)+10*a(n-4)+a(n-5)
A287818
Number of nonary sequences of length n such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 9, 69, 531, 4089, 31491, 242529, 1867851, 14385369, 110789811, 853254609, 6571393371, 50609994249, 389776014531, 3001884188289, 23119197549291, 178053936060729, 1371293449053651, 10561101680875569, 81336980637343611, 626421808927336809, 4824426473972595171
Offset: 0
For n=2 the a(2) = 81 - 12 = 69 sequences contain every combination except these twelve: 03,30,14,41,25,52,36,63,47,74,58,85.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{9, -10}, {1, 9, 69}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 9, 69][n]
return 9*a(n-1)-10*a(n-2)
A287826
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 10, 84, 708, 5968, 50308, 424080, 3574860, 30134944, 254028100, 2141377008, 18051134892, 152165391616, 1282706408548, 10812811724688, 91148603152524, 768354066287200, 6476983198439812, 54598931916359472, 460251829451302764, 3879778213203474880
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{10, -13, -2}, {1, 10, 84}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 10, 84][n]
return 10*a(n-1)-13*a(n-2)-2*a(n-3)
A287827
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 10, 86, 742, 6404, 55274, 477082, 4117804, 35541714, 306768722, 2647791524, 22853698754, 197255539962, 1702558017644, 14695170558994, 126837403201602, 1094762853302164, 9449150445514434, 81557794797885642, 703944119701429084, 6075903902137709074
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, -1, -20, 10}, {1, 10, 86, 742, 6404}, 30]
-
def a(n):
if n in [0, 1, 2, 3, 4]:
return [1, 10, 86, 742, 6404][n]
return 9*a(n-1)-a(n-2)-20*a(n-3)+10*a(n-4)
A287828
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 4.
Original entry on oeis.org
1, 10, 88, 776, 6844, 60364, 532412, 4695892, 41417932, 365307620, 3222026092, 28418383780, 250651147340, 2210751960772, 19498910274028, 171981076403492, 1516879160180620, 13378927697789188, 118002614210453804, 1040787219651555556, 9179779989094951372
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 0, -14}, {1, 10, 88, 776}, 30]
-
def a(n):
if n in [0, 1, 2, 3]:
return [1, 10, 88, 776][n]
return 9*a(n-1)-14*a(n-3)
A287829
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 6.
Original entry on oeis.org
1, 10, 92, 848, 7816, 72040, 663992, 6120008, 56408056, 519912520, 4792028792, 44168084168, 407096815096, 3752207504200, 34584061167992, 318760965520328, 2938016812018936, 27079673239211080, 249593092776937592, 2300497181470860488, 21203660818791619576
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 2}, {1, 10}, 30]
-
def a(n):
if n in [0, 1]:
return [1, 10][n]
return 9*a(n-1)+2*a(n-2)
A287830
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 7.
Original entry on oeis.org
1, 10, 94, 886, 8350, 78694, 741646, 6989590, 65872894, 620814406, 5850821230, 55140648694, 519669123166, 4897584703270, 46156938822094, 435002788211926, 4099652849195710, 38636886795609094, 364130592557264686, 3431722880197818550, 32342028292009425694
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 4}, {1, 10}, 30]
-
def a(n):
if n in [0, 1]:
return [1, 10][n]
return 9*a(n-1)+4*a(n-2)
A287832
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 1.
Original entry on oeis.org
1, 11, 101, 929, 8545, 78599, 722973, 6650087, 61169169, 562649373, 5175390189, 47604538285, 437878494689, 4027716327495, 37047945974857, 340776308298291, 3134546038698889, 28832341420057365, 265207115001514409, 2439441626426418609, 22438596523731989473
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
LinearRecurrence[{11, -14, -28, 39, 9, -10}, {1, 11, 101, 929, 8545, 78599, 722973}, 20]
-
def a(n):
if n in [0,1,2,3,4,5,6]:
return [1, 11, 101, 929, 8545, 78599, 722973][n]
return 11*a(n-1) - 14*a(n-2) - 28*a(n-3) + 39*a(n-4) + 9*a(n-5) - 10*a(n-6)
A287833
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 11, 103, 967, 9079, 85243, 800351, 7514541, 70554457, 662439857, 6219685951, 58396989455, 548292695881, 5147951686649, 48334414751849, 453814602701801, 4260891430727991, 40005754941255473, 375616336261903907, 3526683405274793053, 33112233522155404139
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
LinearRecurrence[{10, -2, -37, 16, 19, 1}, {1, 11, 103, 967, 9079, 85243}, 20]
-
def a(n):
if n in [0,1,2,3,4,5]:
return [1, 11, 103, 967, 9079, 85243][n]
return 10*a(n-1) - 2*a(n-2) - 37*a(n-3) + 16*a(n-4) + 19*a(n-5) + a(n-6)
A287834
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 11, 105, 1005, 9621, 92105, 881753, 8441329, 80811789, 773639469, 7406320733, 70903294113, 678781988705, 6498216958121, 62209699634757, 595555173609653, 5701457600593525, 54582044135967257, 522532964509030377, 5002390498942001761, 47889630709552579709
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
LinearRecurrence[{10, -2, -21, 10}, {1, 11, 105, 1005, 9621}, 20]
-
def a(n):
if n in [0,1,2,3,4]:
return [1, 11, 105, 1005, 9621][n]
return 10*a(n-1) - 2*a(n-2) - 21*a(n-3) + 10*a(n-4)
Comments