cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A103279 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 3, 1, 3, 8, 1, 3, 9, 22, 1, 3, 10, 27, 60, 1, 3, 11, 34, 81, 164, 1, 3, 12, 43, 116, 243, 448, 1, 3, 13, 54, 171, 396, 729, 1224, 1, 3, 14, 67, 252, 683, 1352, 2187, 3344, 1, 3, 15, 82, 365, 1188, 2731, 4616, 6561, 9136, 1, 3, 16, 99, 516, 2019, 5616, 10923, 15760
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1]; Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,1] is equivalent to the recursion a(1) = 1, a(2) = 3, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
1,
3,
N + 8,
N^2 + 4*N + 22,
N^3 + 4*N^2 + 16*N + 60,
N^4 + 4*N^3 + 18*N^2 + 56*N + 164,
N^5 + 4*N^4 + 20*N^3 + 68*N^2 + 188*N + 448,
N^6 + 4*N^5 + 22*N^4 + 80*N^3 + 248*N^2 + 608*N + 1224,
N^7 + 4*N^6 + 24*N^5 + 92*N^4 + 312*N^3 + 864*N^2 + 1920*N + 3344,
N^8 + 4*N^7 + 26*N^6 + 104*N^5 + 380*N^4 + 1152*N^3 + 2928*N^2 + 5952*N + 9136,
etc.

Examples

			Array begins:
1,3,8,22,60,164,448,1224,3344,9136,...
1,3,9,27,81,243,729,2187,6561,19683,...
1,3,10,34,116,396,1352,4616,15760,53808,...
1,3,11,43,171,683,2731,10923,43691,174763,...
1,3,12,54,252,1188,5616,26568,125712,594864,...
...
		

Crossrefs

Cf. A103280 (for (M^n)[1, 2]), A028859 (for N=0), A000244 (for N=1), A007052 (for N=2), A007583 (for N=3), A083881 (for N=4), A026581 (for N=-1), A026532 (for N=-2), A026568.

Programs

  • PARI
    T11(N, n) = if(n==1,1,if(n==2,3,(N+2)*r1(N,n-1)-(2*N-2)*r1(N,n-2))) for(k=0,10,print1(k,": ");for(i=1,10,print1(T11(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=3, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).
Previous Showing 11-11 of 11 results.