cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 70 results. Next

A065701 Numbers m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,67.

Original entry on oeis.org

11958, 44118, 88740, 97986, 108438, 184416, 245520, 347628, 348030, 418380, 516870, 542598, 546618, 590436, 637470, 674856, 679680, 767316, 809526, 817566, 818370, 888720, 904800, 914046, 930930, 938568, 1006506, 1020978, 1047510, 1070826, 1081278, 1155246, 1209516
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1250000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[67# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(67# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

A065702 Values of m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,69.

Original entry on oeis.org

378, 1068, 24390, 29220, 32118, 56130, 70620, 74760, 77658, 82350, 96978, 100980, 110640, 114228, 132858, 152040, 177018, 183090, 186678, 214830, 253608, 282588, 290040, 319158, 342480, 345378, 374358, 388710, 406788, 418380, 428040, 442530, 463230, 463920, 477720
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 500000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[69# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(69# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

A064239 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,5.

Original entry on oeis.org

6, 36, 306, 366, 546, 726, 966, 1296, 2556, 3066, 3696, 3876, 4506, 6036, 6216, 7686, 9126, 9276, 9906, 10596, 10656, 10836, 11286, 12516, 13146, 14196, 14406, 14736, 16266, 17106, 18216, 19416, 19476, 20406, 22146, 22806, 23766
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 23800, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[5# + 1] &&
    CarmichaelNbrQ[(# + 1)(2# + 1)(5# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064240 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,7.

Original entry on oeis.org

30, 156, 618, 660, 1626, 2550, 4230, 4356, 4566, 5658, 6120, 6708, 7506, 11496, 15318, 16746, 18048, 19140, 19476, 19686, 20610, 21030, 22920, 23130, 24096, 25188, 26406, 27918, 29346, 29598, 29640, 32748, 33966, 35058, 39678, 41610
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 42000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[7# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(7# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064241 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,9.

Original entry on oeis.org

30, 228, 498, 1398, 1758, 2028, 2280, 3180, 4800, 5430, 6150, 6420, 6708, 7950, 8688, 9930, 11838, 13728, 16518, 16878, 17490, 19488, 26040, 28200, 30108, 30468, 33528, 33870, 34140, 34500, 35490, 35670, 38298, 38820, 39900, 40350
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 42000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[9# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(9# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064242 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,11.

Original entry on oeis.org

378, 576, 1236, 3018, 7506, 9090, 18396, 26250, 27966, 28098, 28428, 31068, 32190, 32586, 34500, 35490, 40506, 42156, 46446, 47700, 48888, 50670, 53376, 55290, 55818, 58788, 65256, 65718, 68226, 73308, 74760, 75618, 77730, 86178
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 88000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[11# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(11# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064243 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,13.

Original entry on oeis.org

96, 1656, 2280, 5556, 6960, 7506, 8286, 12420, 12966, 15540, 17490, 23496, 26226, 28410, 32076, 33870, 42060, 53526, 57036, 61560, 67956, 73416, 89796, 104850, 107580, 108516, 122166, 124350, 126690, 132150, 143616, 148920
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 150000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[13# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(13# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064244 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,15.

Original entry on oeis.org

36, 156, 306, 546, 576, 606, 726, 1236, 1296, 1626, 1656, 2616, 2706, 3036, 3186, 3606, 3696, 4566, 5166, 5556, 6216, 6966, 7296, 7536, 7866, 8286, 9156, 10176, 10266, 10596, 11496, 14406, 16086, 16416, 16746, 18396, 18636, 18786, 19476
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 20000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[15# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(15# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064245 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,17.

Original entry on oeis.org

228, 3186, 5226, 5430, 8286, 13998, 15936, 16650, 19608, 24708, 27258, 31848, 34500, 40926, 41130, 43986, 44496, 50310, 53880, 55410, 55818, 70098, 71118, 73770, 86010, 87540, 108246, 110898, 120996, 124566, 129360, 147516, 166080
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 170000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[17# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(17# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064246 Numbers m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,19.

Original entry on oeis.org

7950, 8520, 9318, 25620, 29268, 29610, 32118, 44088, 48078, 67800, 70308, 72018, 83760, 95730, 133350, 138138, 174048, 175758, 176898, 186018, 188868, 225918, 244158, 256698, 265818, 280638, 289758
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 300000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[19# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(19# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019
Previous Showing 11-20 of 70 results. Next