cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 70 results. Next

A064247 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,21.

Original entry on oeis.org

30, 198, 366, 576, 618, 828, 1626, 2466, 2550, 3390, 4860, 4986, 5658, 6036, 6120, 6708, 6960, 7506, 12966, 13218, 13680, 15318, 16746, 18048, 18678, 19476, 20946, 21030, 21786, 22668, 23130, 23676, 23760, 25608, 26406, 26700
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 30000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[21# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(21# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064248 Numbers m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,23.

Original entry on oeis.org

6036, 13626, 43710, 46470, 46746, 51990, 52956, 55440, 58476, 60960, 77796, 82350, 86076, 95460, 99876, 114780, 121266, 168600, 176190, 195510, 201996, 208206, 255126, 258990, 261336, 268926, 270030, 270306
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 280000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[23# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(23# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

A064249 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,25.

Original entry on oeis.org

2136, 6036, 7536, 11886, 17136, 18636, 21786, 24336, 27336, 27486, 28386, 28686, 30186, 40086, 50586, 51786, 52836, 59886, 70536, 74286, 85236, 86286, 93786, 95286, 100986, 110586, 111636, 118386, 120936, 125736, 135636
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 140000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[25# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(25# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064250 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,27.

Original entry on oeis.org

606, 2280, 3036, 3738, 7950, 15348, 16266, 20640, 21558, 23826, 26040, 27066, 28686, 30576, 31386, 31656, 32358, 33870, 36570, 47856, 49476, 53148, 57036, 64920, 65028, 70536, 72480, 80526, 85818, 86466, 92568, 94350, 96996, 102828
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 105000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[27# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(27# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected by Amiram Eldar, Oct 17 2019

A064251 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,29.

Original entry on oeis.org

1608, 9090, 13440, 18660, 25620, 41280, 48588, 54678, 59028, 69990, 72948, 73470, 88260, 112620, 135588, 144288, 152640, 170388, 197358, 204318, 225720, 233550, 245208, 264870, 302628, 337080, 361440, 371358, 380058, 386148, 403548, 433650, 440958, 446178, 463230
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 29}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064252 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,31.

Original entry on oeis.org

13158, 15390, 16878, 25620, 31386, 36036, 60960, 92580, 109320, 110436, 132756, 136848, 177210, 184650, 236916, 247518, 265560, 273186, 278766, 308526, 314850, 317826, 326940, 333450, 338286, 364140, 376416, 389436, 440958, 447840, 451746, 467556, 476298, 494340
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 31}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064253 Values of n such that N=(an+1)(bn+1)(cn+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,33.

Original entry on oeis.org

576, 1170, 2556, 6120, 20706, 23676, 29220, 29286, 32586, 39450, 46380, 46446, 50076, 52386, 58920, 63210, 65256, 65850, 69876, 74100, 77796, 93240, 107826, 113370, 114030, 116340, 127296, 128220, 129606, 130530, 140826, 141156, 149340, 170196, 174090, 177126, 178446
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

an+1, bn+1, cn+1 are primes and an | (N-1), bn | (N-1), cn |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 33}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

More terms from Amiram Eldar, Oct 17 2019

A064254 Values of n such that N=(an+1)(bn+1)(cn+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,35.

Original entry on oeis.org

576, 1626, 2466, 4356, 4566, 7296, 11496, 15276, 16746, 18636, 20106, 20946, 24096, 28926, 38376, 44256, 57486, 74286, 78696, 95916, 98226, 99906, 100746, 101376, 122166, 127206, 128046, 128676, 136656, 141906, 149256, 152406, 153456, 158076, 172146, 179496, 180546
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

an+1, bn+1, cn+1 are primes and an | (N-1), bn | (N-1), cn |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 35}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

More terms from Amiram Eldar, Oct 17 2019

A064255 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,37.

Original entry on oeis.org

498, 1608, 9156, 21588, 24696, 26250, 27360, 42456, 50670, 93738, 95736, 111720, 119046, 121266, 145020, 149238, 150570, 153456, 158340, 173658, 174990, 198300, 209178, 211176, 290208, 305748, 317070, 317958, 329058, 332610, 342378, 351258, 362580, 398988, 420966
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 37}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064256 Numbers m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,39.

Original entry on oeis.org

3528, 4620, 8208, 13668, 21858, 24978, 26538, 29268, 30828, 33870, 34260, 34728, 44088, 51030, 58128, 58440, 61560, 72948, 79578, 80670, 95568, 107580, 109608, 112338, 118188, 118890, 124350, 126690, 142758, 144708, 148530, 176220, 191898, 196578, 198528, 208590
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 39}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019
Previous Showing 21-30 of 70 results. Next