cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A089647 Number of triangular partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 8, 12, 18, 26, 37, 54, 76, 111, 156, 221, 310, 438, 608, 850, 1178, 1633, 2251, 3104, 4257, 5837, 7972, 10866, 14772, 20042, 27121, 36625, 49356, 66366, 89077, 119319, 159547, 212942, 283753, 377423, 501274, 664639, 879963
Offset: 0

Views

Author

John W. Layman, Jan 02 2004

Keywords

Comments

Number of ways of writing n as a sum [p(1,1) + p(1,2) + ... + p(1,k)] + [p(2,1) + ... + p(2,k-1)] + [p(3,1) + ... + p(3,k-2)] + ... + [p(k,1)] for some k =0, 1, 2, ..., so that in the triangular array {p(i,j)} the numbers are nonincreasing along rows and columns. All the p(i,j) are >= 1.

Examples

			a(8)=12, as seen from the following list:
8...61..51..41..52..42..32..43..33..311.211.221
....1...2...3...1...2...3...1...2...11..21..11.
....................................1...1...1..
		

Crossrefs

Cf. A089299.

Extensions

More terms from Jon E. Schoenfield, Aug 06 2006

A306320 Number of square plane partitions of n with distinct row sums and distinct column sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 5, 5, 10, 11, 18, 21, 31, 37, 56, 70, 97, 134, 180, 247, 343, 462, 623, 850, 1128, 1509, 2004, 2649, 3467, 4590, 5958, 7814, 10161, 13287, 17208, 22495, 29129, 37997, 49229, 64098, 82940, 107868, 139390, 180737, 233214, 301527, 388018, 500058
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2019

Keywords

Examples

			The a(12) = 21 square plane partitions with distinct row sums and distinct column sums:
[twelve]
.
[64][73][82][91][54][63][72][81][44][53][53][62][62][71][43][43][52][52][61]
[11][11][11][11][21][21][21][21][31][22][31][22][31][31][32][41][32][41][41]
.
[221]
[211]
[111]
		

Crossrefs

Cf. A000219, A089299 (square plane partitions), A101509, A271619, A279785, A306318, A323429, A323529, A323530, A323531.

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Reverse/@Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Total/@#&&UnsameQ@@Total/@If[#=={},{},Transpose[#]]&&And@@OrderedQ/@Reverse/@If[#=={},{},Transpose[#]]&]],{ptn,IntegerPartitions[n]}],{n,0,20}]
Previous Showing 11-12 of 12 results.