cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A343818 a(n) is the least number k such that k and k+1 both have n Fermi-Dirac factors (A064547).

Original entry on oeis.org

2, 14, 104, 2079, 21735, 3341624, 103488384, 6110171144
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2021

Keywords

Comments

Since the number of infinitary divisors of k is A037445(k) = 2^A064547(k), a(n) is also the least number k such that k and k+1 both have 2^n infinitary divisors.
a(9) > 2*10^11, if it exists.

Examples

			a(1) = 2 since A064547(2) = A064547(3) = 1.
a(2) = 14 since A064547(14) = A064547(15) = 2.
		

Crossrefs

Similar sequences: A045920, A052215, A075036, A093548, A115186.

Programs

  • Mathematica
    fd[1] = 0; fd[n_] := Plus @@ DigitCount[FactorInteger[n][[;;,2]], 2, 1]; seq[m_] := Module[{s = Table[0, {m}], c = 0, n = 1, fd1, fd2}, fd1=fd[n]; While[c < m, fd2 = fd[++n]; If[fd1 == fd2 && fd1 <= m && s[[fd1]] == 0, s[[fd1]] = n-1; c++]; fd1=fd2]; s]; seq[5]

A344315 a(n) is the least number k such that A048105(k) = A048105(k+1) = 2*n, and 0 if it does not exist.

Original entry on oeis.org

1, 27, 135, 2511, 2295, 6975, 5264, 12393728, 12375, 2200933376, 108224, 257499, 170624, 3684603215871, 4402431, 2035980763136, 126224, 41680575, 701443071, 46977524, 1245375, 2707370000, 4388175, 3129761024, 1890944
Offset: 0

Views

Author

Amiram Eldar, May 14 2021

Keywords

Comments

There are no two consecutive numbers with an odd number of non-unitary divisors, since A048105(k) is odd only if k is a perfect square.
a(25) <= 1965640805422351777791, a(26) <= 3127059999. In general, a(n) <= A215199(n+1). - Daniel Suteu, May 20 2021

Examples

			a(0) = 1 since A048105(1) = A048105(2) = 0.
a(1) = 27 since A048105(27) = A048105(28) = 2.
		

Crossrefs

Programs

  • Mathematica
    nd[n_] := DivisorSigma[0, n] - 2^PrimeNu[n]; seq[max_] := Module[{s = Table[0, {max}], k = 2, c = 0, nd1 = 0}, While[c < max, If[(nd2 = nd[k]) == nd1 && nd2 < 2*max && s[[nd2/2 + 1]] == 0, c++; s[[nd2/2 + 1]] = k - 1]; nd1 = nd2; k++]; s]; seq[7]
  • PARI
    A048105(n) = numdiv(n) - 2^omega(n);
    isok(n,k) = A048105(k) == 2*n && A048105(k+1) == 2*n;
    a(n) = for(k=1, oo, if(isok(n, k), return(k))); \\ Daniel Suteu, May 16 2021

Extensions

a(13)-a(24) confirmed by Martin Ehrenstein, May 20 2021

A358818 a(n) is the least number k such that A046660(k) = A046660(k+1) = n.

Original entry on oeis.org

1, 44, 135, 80, 8991, 29888, 123200, 2316032, 1043199, 24151040, 217713663, 689278976, 11573190656, 76876660736, 311969153024, 2035980763136, 2741258240000, 215189482110975
Offset: 0

Views

Author

Amiram Eldar, Dec 02 2022

Keywords

Comments

a(14) <= 314944159743.
a(18) > 10^14.5; a(19) = 275892612890624; a(20) > 10^14.5. - Martin Ehrenstein, Dec 11 2022

Crossrefs

Cf. A046660.
Subsequence of A358817.
Similar sequences: A052215, A059737, A093548, A115186.

Programs

  • Mathematica
    e[n_] := PrimeOmega[n] - PrimeNu[n]; a[n_] := Module[{k = 1}, While[e[k] != n || e[k + 1] != n, k++]; k]; Array[a, 10, 0]
  • PARI
    e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
    a(n) = {my(k=1); while(e(k) != n || e(k+1) !=n , k++); k};

Extensions

a(14)-a(16) from Martin Ehrenstein, Dec 04 2022
a(17) from Martin Ehrenstein, Dec 09 2022

A349261 a(n) is the least number k such that A349258(k) = A349258(k+1) = n.

Original entry on oeis.org

2, 14, 125, 135, 2079, 21735, 2730375, 916352, 5955200, 4122495, 444741759, 7391633535, 98228219264
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Examples

			2 is a term since A349258(2) = A349258(3) = 1.
14 is a term since A349258(14) = A349258(15) = 2.
		

Crossrefs

Cf. A349258.
Similar sequences: A075036, A093548, A115186, A343818.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; c[1] = 0; c[n_] := Plus @@ f @@@ FactorInteger[n]; seq[len_, nmax_] := Module[{s = Table[0, {len}], k = 0, n = 1, i}, While[n < nmax && k < len, i = c[n]; If[c[n + 1] == i && i <= len && s[[i]] == 0, k++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[8, 3*10^6]
Previous Showing 11-14 of 14 results.