A343818
a(n) is the least number k such that k and k+1 both have n Fermi-Dirac factors (A064547).
Original entry on oeis.org
2, 14, 104, 2079, 21735, 3341624, 103488384, 6110171144
Offset: 1
a(1) = 2 since A064547(2) = A064547(3) = 1.
a(2) = 14 since A064547(14) = A064547(15) = 2.
-
fd[1] = 0; fd[n_] := Plus @@ DigitCount[FactorInteger[n][[;;,2]], 2, 1]; seq[m_] := Module[{s = Table[0, {m}], c = 0, n = 1, fd1, fd2}, fd1=fd[n]; While[c < m, fd2 = fd[++n]; If[fd1 == fd2 && fd1 <= m && s[[fd1]] == 0, s[[fd1]] = n-1; c++]; fd1=fd2]; s]; seq[5]
A344315
a(n) is the least number k such that A048105(k) = A048105(k+1) = 2*n, and 0 if it does not exist.
Original entry on oeis.org
1, 27, 135, 2511, 2295, 6975, 5264, 12393728, 12375, 2200933376, 108224, 257499, 170624, 3684603215871, 4402431, 2035980763136, 126224, 41680575, 701443071, 46977524, 1245375, 2707370000, 4388175, 3129761024, 1890944
Offset: 0
a(0) = 1 since A048105(1) = A048105(2) = 0.
a(1) = 27 since A048105(27) = A048105(28) = 2.
-
nd[n_] := DivisorSigma[0, n] - 2^PrimeNu[n]; seq[max_] := Module[{s = Table[0, {max}], k = 2, c = 0, nd1 = 0}, While[c < max, If[(nd2 = nd[k]) == nd1 && nd2 < 2*max && s[[nd2/2 + 1]] == 0, c++; s[[nd2/2 + 1]] = k - 1]; nd1 = nd2; k++]; s]; seq[7]
-
A048105(n) = numdiv(n) - 2^omega(n);
isok(n,k) = A048105(k) == 2*n && A048105(k+1) == 2*n;
a(n) = for(k=1, oo, if(isok(n, k), return(k))); \\ Daniel Suteu, May 16 2021
A358818
a(n) is the least number k such that A046660(k) = A046660(k+1) = n.
Original entry on oeis.org
1, 44, 135, 80, 8991, 29888, 123200, 2316032, 1043199, 24151040, 217713663, 689278976, 11573190656, 76876660736, 311969153024, 2035980763136, 2741258240000, 215189482110975
Offset: 0
-
e[n_] := PrimeOmega[n] - PrimeNu[n]; a[n_] := Module[{k = 1}, While[e[k] != n || e[k + 1] != n, k++]; k]; Array[a, 10, 0]
-
e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
a(n) = {my(k=1); while(e(k) != n || e(k+1) !=n , k++); k};
A349261
a(n) is the least number k such that A349258(k) = A349258(k+1) = n.
Original entry on oeis.org
2, 14, 125, 135, 2079, 21735, 2730375, 916352, 5955200, 4122495, 444741759, 7391633535, 98228219264
Offset: 1
2 is a term since A349258(2) = A349258(3) = 1.
14 is a term since A349258(14) = A349258(15) = 2.
-
f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; c[1] = 0; c[n_] := Plus @@ f @@@ FactorInteger[n]; seq[len_, nmax_] := Module[{s = Table[0, {len}], k = 0, n = 1, i}, While[n < nmax && k < len, i = c[n]; If[c[n + 1] == i && i <= len && s[[i]] == 0, k++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[8, 3*10^6]
Comments