A098327
Recurrence sequence derived from the decimal places of sqrt(e).
Original entry on oeis.org
0, 9, 60, 79, 59, 137, 479, 2897, 1397, 24474, 63515, 71287, 191542, 1432289, 1766633, 1380465, 2894629, 1464385, 10676561
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 13 2004
sqrt(e)=1.6487212707001281468...
So for example, with a(1)=0, a(2)=9 because 9th decimal place is 0; a(3)=60 because 9 appears at decimal place number 60 and so on.
Other recurrence sequences:
A097614 for Pi,
A098266 for e,
A098289 for log(2),
A098290 for Zeta(3),
A098319 for 1/Pi,
A098320 for 1/e,
A098321 for gamma,
A098322 for G,
A098323 for 1/G,
A098324 for Golden Ratio (phi),
A098325 for sqrt(Pi),
A098326 for sqrt(2).
A098328
Recurrence sequence derived from the digits of the cube root of 2 after its decimal point.
Original entry on oeis.org
0, 7, 14, 42, 147, 321, 473, 322, 785, 1779, 3039, 1957, 16446, 274134, 374781, 110639, 248175, 385504, 2359264, 5108010, 3822244, 3812946, 9896631
Offset: 0
Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004
2^(1/3)=1.259921049894873164767210607...
So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on.
Other recurrence sequences:
A097614 for Pi,
A098266 for e,
A098289 for log(2),
A098290 for Zeta(3),
A098319 for 1/Pi,
A098320 for 1/e,
A098321 for gamma,
A098322 for G,
A098323 for 1/G,
A098324 for Golden Ratio (phi),
A098325 for sqrt(Pi),
A098326 for sqrt(2),
A098327 for sqrt(e).
A002580 for digits of 2^(1/3).
-
with(StringTools): Digits:=10000: G:=convert(evalf(root(2,3)),string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011
A120482
Recurrence sequence derived from the digits of the square root of 3 after its decimal point.
Original entry on oeis.org
0, 4, 22, 215, 2737, 8636, 20805, 38867, 1868, 6505, 5767, 1004, 1216, 11702, 55995, 43202, 314308, 2100749, 2420235, 7750204, 5141127, 2950527, 3113789, 42198, 119161, 96031, 77643, 10695, 105061, 37099, 176209, 3390478, 4549989, 9038843
Offset: 0
sqrt(3) = 1.73205080756887729352744634151...
So for example, with a(0) = 0, a(1) = 4 because the 4th digit after the decimal point is 0; a(2) = 22 because the 22nd digit after the decimal point is 4 and so on.
Other recurrence sequences:
A097614 for Pi,
A098266 for e,
A098289 for log(2),
A098290 for Zeta(3),
A098319 for 1/Pi,
A098320 for 1/e,
A098321 for gamma,
A098322 for G,
A098323 for 1/G,
A098324 for Golden Ratio (phi),
A098325 for sqrt(Pi),
A098326 for sqrt(2),
A189893 for sqrt(5),
A098327 for sqrt(e),
A098328 for 2^(1/3).
-
with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(3)),string): a[0]:=0: for n from 1 to 6 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011
A189893
Recurrence sequence derived from the digits of the square root of 5 after its decimal point.
Original entry on oeis.org
0, 4, 10, 65, 173, 22, 96, 15, 48, 78, 13, 201, 487, 594, 2719, 5146, 8719, 11530, 15308, 76411, 76016, 42220, 67129, 45349, 170266, 255576, 457846, 865810, 1131083, 8045547, 7669757
Offset: 0
sqrt(5) = 2.2360679774997896964091736687...
So for example, with a(0) = 0, a(1) = 4 because the 4th digit after the decimal point is 0; a(2) = 10 because the 10th digit after the decimal point is 4 and so on.
Other recurrence sequences:
A097614 for Pi,
A098266 for e,
A098289 for log(2),
A098290 for Zeta(3),
A098319 for 1/Pi,
A098320 for 1/e,
A098321 for gamma,
A098322 for G,
A098323 for 1/G,
A098324 for Golden Ratio (phi),
A098325 for sqrt(Pi),
A098326 for sqrt(2),
A120482 for sqrt(3),
A098327 for sqrt(e),
A098328 for 2^(1/3).
-
with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(5)),string): a[0]:=0: for n from 1 to 17 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od:
Comments