A274027
Numbers k such that k^4 is the average of a positive cube and a positive fifth power.
Original entry on oeis.org
1, 162, 324, 3888, 11664, 18750, 31250, 32768, 38416, 40000, 160000, 167042, 168750, 253125, 373248, 607500, 911250, 1037232
Offset: 1
162 = 3*54 is a term because (3*54)^4 = ((18*54)^3 + 54^5)/2.
38416 = 14^4 is a term because (14^4)^4 = ((3*14^5)^3 + (14^3)^5)/2.
-
isA100293(n) = for(y=1, sqrtnint(n-1, 5), if(ispower(n-y^5, 3), return(1))); 0;
lista(nn) = for(n=1, nn, if(isA100293(2*n^4), print1(n, ", ")));
A274033
Numbers k such that k = a^2 + b^4 and n^2 = c^3 + d^5 for some positive integers a, b, c, d.
Original entry on oeis.org
81250, 1062882, 11529602, 12500000, 170061120, 200000000, 2662400000, 5897400777, 7309688832, 12814453125, 34297420960, 37019531250
Offset: 1
81250 is a term because 81250 = 175^2 + 15^4 and 81250^2 = 1875^3 + 25^5.
A303377
Numbers of the form a^7 + b^8, with integers a, b > 0.
Original entry on oeis.org
2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803
Offset: 1
The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ...
-
With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]]
-
is(n,k=7,m=8)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
A303377_vec(L=10^7,k=7,m=8,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L
Comments