A108393 a(n)=number of primes of the form p^2+k^2 with 2<=k<=floor(sqrt(2*p+1)) (less than (p+1)^2), for every p(n).
1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 3, 2, 2, 0, 3, 1, 3, 2, 1, 3, 2, 5, 2, 2, 5, 2, 2, 3, 3, 1, 3, 2, 4, 3, 1, 1, 2, 1, 3, 4, 2, 2, 4, 1, 3, 2, 4, 3
Offset: 1
Keywords
Examples
a(5)=1 because p(5)=11 and very is only one value of k<=floor(sqrt(2*11+1))=4 for which p(5)^2+k^2 is prime: 11^2+4^2=137 a(27)=3 because p(27)=103 and 103^2+2^2=10613,103^2+10^2=10709,103^2+12^2=10753 are primes.
Crossrefs
Cf. A108714.
Comments