cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A109797 First of a pair of compatible numbers, where two numbers m and n are compatible if sigma(n)-2dn=sigma(m)-2dm=m+n, for some proper divisors dn and dm of m and n respectively.

Original entry on oeis.org

24, 30, 40, 42, 48, 60, 80, 80, 96, 102, 126, 140, 140, 156, 156, 156, 174, 180, 180, 198, 216, 224, 224, 264, 276, 280, 294, 294, 300, 320, 340, 372, 380, 384, 440, 440, 468, 500, 504, 510, 528, 560, 582, 608, 616, 642, 680, 684, 690, 690, 696, 702, 736, 750
Offset: 1

Views

Author

Walter Kehowski, Aug 15 2005

Keywords

Comments

Compatible numbers were introduced by Sachs in analogy to amicable numbers, as admirable numbers are analogous to perfect numbers. Some terms have more than one counterpart (A109798), like 80 (two counterparts: 102 and 104) or 156 (3 counterparts: 210, 230 and 234). - Amiram Eldar, Oct 26 2019

Examples

			sigma(42)-2(1)=96-2=94 and sigma(52)-2(2)=98-4=94 and 42+52=94 so a(4)=42.
		

Crossrefs

Programs

  • Maple
    L:=remove(proc(z) isprime(z) end, [$1..10000]): S:=proc(n) map(proc(z) sigma(n) -2*z end, divisors(n) minus {n}) end; CK:=map(proc(z) [z,S(z)] end, L): CL:=[]: for j from 1 to nops(CK)-1 do x:=CK[j,1]; sx:=sigma(x); Sx:=CK[j,2]; for k from j+1 to nops(CK) while CK[k,1]
    				
  • Mathematica
    seq = {}; Do[d = Most[Divisors[n]]; s = Total[d]; Do[m = s - 2*d[[k]]; If[m <= 0 || m <= n, Continue[]]; delta = DivisorSigma[1, m] - m - n; If[delta > 0 && EvenQ[delta] && delta/2 < m && Divisible[m, delta/2], AppendTo[seq, n]], {k, Length[d], 1, -1}], {n, 1, 750}]; seq (* Amiram Eldar, Oct 26 2019 *)

A109798 Second of a pair of compatible numbers, where two numbers m and n are compatible if sigma(n)-2dn=sigma(m)-2dm=m+n, for some proper divisors dn and dm of m and n respectively.

Original entry on oeis.org

28, 40, 42, 52, 60, 96, 102, 104, 124, 110, 182, 182, 188, 210, 230, 234, 184, 358, 362, 204, 312, 248, 252, 408, 372, 424, 306, 388, 418, 434, 376, 516, 384, 508, 530, 638, 782, 572, 888, 782, 828, 872, 592, 644, 820, 650, 938, 908, 1026, 1034, 1102, 976, 760
Offset: 1

Views

Author

Walter Kehowski, Aug 15 2005

Keywords

Comments

The terms are arranged by the order of their lesser counterparts (A109797). - Amiram Eldar, Oct 26 2019

Examples

			sigma(42)-2(1)=96-2=94 and sigma(52)-2(2)=98-4=94 and 42+52=94 so a(4)=52.
		

Crossrefs

Programs

  • Maple
    L:=remove(proc(z) isprime(z) end, [$1..10000]): S:=proc(n) map(proc(z) sigma(n) -2*z end, divisors(n) minus {n}) end; CK:=map(proc(z) [z,S(z)] end, L): CL:=[]: for j from 1 to nops(CK)-1 do x:=CK[j,1]; sx:=sigma(x); Sx:=CK[j,2]; for k from j+1 to nops(CK) while CK[k,1]
    				
  • Mathematica
    seq = {}; Do[d = Most[Divisors[n]]; s = Total[d]; Do[m = s - 2*d[[k]]; If[m <= 0 || m <= n, Continue[]]; delta = DivisorSigma[1, m] - m - n; If[delta > 0 && EvenQ[delta] && delta/2 < m && Divisible[m, delta/2], AppendTo[seq, m]], {k, Length[d], 1, -1}], {n, 1, 750}]; seq (* Amiram Eldar, Oct 26 2019 *)

A111646 Subtracted divisor in admirable numbers.

Original entry on oeis.org

2, 1, 6, 6, 5, 6, 6, 4, 6, 2, 6, 28, 2, 6, 1, 6, 60, 6, 28, 6, 6, 6, 28, 39, 6, 6, 90, 6, 28, 6, 6, 28, 6, 4, 6, 6, 6, 1, 6, 28, 6, 28, 6, 6, 6, 6, 6, 28, 1, 6, 336, 6, 6, 6, 28, 6, 6, 4, 28, 6, 6, 6, 15, 6, 16, 6, 28, 6, 6, 6, 6, 28, 6, 6, 6, 28, 6, 28, 6, 6, 28, 6, 6, 6, 6, 28, 496, 8, 6, 6, 6, 6
Offset: 1

Views

Author

Jason Earls, Aug 10 2005

Keywords

Examples

			a(1)=2 because 12 = 1+3+4+6-2, the 2 is subtracted. a(6)=6 because 42 = 1+2+3+7+14+21-6, the 6 is subtracted.
		

Crossrefs

Formula

a(n) = A033880(A111592(n))/2 = A111667(n)/2. - Amiram Eldar, Jun 22 2019

A291459 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 5.

Original entry on oeis.org

294053760, 575134560, 739458720, 882161280, 1193512320, 1314593280, 1725403680, 2539555200, 2588105520, 2646483840, 2711348640, 3008396160, 3891888000, 4053329280, 4214770560, 4648644000, 4802878080, 5176211040, 5194949760, 5258373120, 6470263800, 6768891360, 7900532640
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).
Subset of A215264.

Examples

			One of the proper divisors of 294053760 is 2056320 and sigma(294053760) - 5*2056320 = 1480550400 - 10281600 = 1470268800 = 5*294053760.
One of the proper divisors of 3891888000 is 314496 and sigma(3891888000) - 5*314496 = 19461012480 - 1572480 = 19459440000 = 5*3891888000.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^10,5);

A336680 Exponential admirable numbers: numbers k such that there is a proper exponential divisor d of k such that esigma(k) - 2*d = 2*k, where esigma is the sum of exponential divisors function (A051377).

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 7056, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 40572, 42300, 42588, 47700
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper exponential divisors, with one of them taken with a minus sign.

Examples

			900 is a term since 900 = 30 + 60 + 90 + 150 - 180 + 300 + 450 is the sum of its proper exponential divisors with one of them, 180, taken with a minus sign.
		

Crossrefs

The exponential version of A111592.
Subsequence of A129575.
Similar sequences: A328328, A334972, A334974.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[50000], expAdmQ]

A109131 Admirable numbers such that the subtracted divisor is a triangular number.

Original entry on oeis.org

20, 24, 30, 42, 54, 66, 78, 84, 102, 104, 114, 138, 140, 174, 186, 222, 224, 246, 258, 282, 308, 318, 354, 364, 366, 402, 426, 438, 464, 474, 476, 498, 532, 534, 582, 606, 618, 642, 644, 650, 654, 678, 762, 786, 812, 822, 834, 868, 894, 906, 942, 945, 978
Offset: 1

Views

Author

Jason Earls, Aug 17 2005

Keywords

Examples

			a(2)=24 because 1+2+3+4+8+12-6 = 24 and the subtracted divisor is triangular.
		

Crossrefs

Cf. A000217 (triangular numbers), A111592 (admirable numbers).

Programs

  • Mathematica
    triQ[n_] := IntegerQ @ Sqrt[8n + 1]; Select[Range[1000], MemberQ[Divisors[#], (d = (DivisorSigma[1, #] - 2#)/2)] && triQ[d] &] (* Amiram Eldar, Sep 21 2019 *)

A109396 Admirable Harshad numbers such that the subtracted divisor is also a Harshad number.

Original entry on oeis.org

12, 20, 24, 30, 40, 42, 54, 70, 102, 114, 120, 222, 270, 402, 1002, 2022, 2202, 10002, 10014, 10792, 11202, 12102, 21102, 31002, 32128, 45356, 103002, 110202, 111102, 128768, 740870, 1000002, 1000014, 1001202, 1002102, 1021002, 1111002, 1200102
Offset: 1

Views

Author

Jason Earls, Aug 26 2005

Keywords

Examples

			12 is in the sequence since it is a Harshad number (1 + 2 = 3 is a divisor of 12), an admirable number: 1 - 2 + 3 + 4 + 6 = 12, and the subtracted divisor, 2, is also a Harshad number.
		

Crossrefs

Programs

  • Mathematica
    hQ[n_] := Divisible[n, Plus @@ IntegerDigits@n]; aQ[n_] := hQ[n] && (d = DivisorSigma[1, n] - 2*n) > 0 && EvenQ[d] && d/2 < n && hQ[d/2] && Divisible[n, d/2]; Select[Range[50000], aQ] (* Amiram Eldar, Oct 27 2019 *)

A109745 Admirable numbers that set a new record for largest subtracted divisor.

Original entry on oeis.org

12, 24, 84, 120, 270, 672, 1488, 1638, 6200, 24384, 174592, 523776, 44736512, 91963648, 100651008, 459818240, 1476304896, 10200236032, 25769607168, 51001180160, 412316073984
Offset: 1

Views

Author

Jason Earls, Aug 10 2005

Keywords

Comments

The records set are A000203(a(n))/2 - a(n) = 2, 6, 28, 60, 90, 336, 496, 546, 1240, 8128, 21824,... - R. J. Mathar, Feb 12 2008

Crossrefs

Programs

  • Mathematica
    admDiv[n_] := Module[{ab = DivisorSigma[1, n] - 2*n}, If[ab > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2], ab/2, 0]];
    seq[nmax_] := Module[{dmax = 0, s = {}, d}, Do[d = admDiv[n]; If[d > dmax, dmax = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[6*10^5] (* Amiram Eldar, Aug 05 2023 *)

Extensions

a(13)-a(20) from Donovan Johnson, Nov 11 2008
a(21) from Amiram Eldar, Aug 05 2023

A109759 Palindromic admirable numbers.

Original entry on oeis.org

66, 88, 222, 282, 464, 474, 606, 868, 2002, 20802, 24042, 24342, 24942, 29092, 41214, 44144, 45354, 46564, 47274, 60906, 64146, 66966, 67676, 80108, 81318, 83238, 85458, 85758, 87378, 89898, 2002002, 2008002, 2024202, 2027202, 2032302
Offset: 1

Views

Author

Jason Earls, Aug 12 2005

Keywords

Crossrefs

Intersection of A002113 and A111592.

Programs

  • Mathematica
    palQ[n_] := PalindromeQ @ IntegerDigits[n]; admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2]; Select[Range[2*10^6], palQ[#] && admQ[#] &] (* Amiram Eldar, Oct 27 2019 *)

A109788 Admirable numbers whose abundance is < 10.

Original entry on oeis.org

12, 20, 56, 70, 88, 104, 368, 464, 650, 836, 1888, 1952, 4030, 5830, 8925, 11096, 17816, 32128, 32445, 45356, 77744, 91388, 128768, 130304, 254012, 388076, 442365, 521728, 522752, 1848964, 2087936, 2291936, 8378368, 8382464, 13174976, 29465852, 35021696, 45335936
Offset: 1

Views

Author

Jason Earls, Aug 14 2005

Keywords

Comments

Apparently all the abundant numbers with even abundance < 10 are admirable (checked for the first 60 terms). Of the 4 known numbers whose abundance is 10 (A223609), only the first, 40, is admirable. - Amiram Eldar, Nov 07 2019

Crossrefs

Programs

  • Mathematica
    aQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab < 10 && ab/2 < n && Divisible[n, ab/2]; Select[Range[10^4], aQ] (* Amiram Eldar, Nov 07 2019 *)
  • PARI
    for(n=1,10^9,my(ap=sigma(n)-2*n); if(ap>0 && ap<10 && ap%2==0, my(d=ap/2); if(d!=n && n%d==0, print1(n, ", ")))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
a(36)-a(38) from Amiram Eldar, Nov 07 2019
Previous Showing 21-30 of 44 results. Next