cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A274367 Taxi-cab numbers (A001235) that are of the form x^2 + y^4 in more than one way (x, y > 0).

Original entry on oeis.org

27445392, 1644443281, 2367885312, 5687433577, 112416325632, 208265121792, 900069054976, 1976398601697, 6735639678976, 9698858237952, 9911785815477, 14585606569872, 15283760730112, 18156501172017, 23295727931392, 29871321586561, 33510832422912, 67250060669952
Offset: 1

Views

Author

Altug Alkan, Jun 19 2016

Keywords

Comments

A272701(3) = 27445392 is the least number with the property that sequence focuses on.
If n = a^3 + b^3 = c^3 + d^3 = x^2 + y^4 = z^2 + t^4, then n*k^12 = (a*k^4)^3 + (b*k^4)^3 = (c*k^4)^3 + (d*k^4)^3 = (x*k^6)^2 + (y*k^3)^4 = (z*k^6)^2 + (t*k^3)^4. So if n is this sequence, then n*k^12 is also in this sequence for all k > 1.

Examples

			27445392 is a term because 27445392 = 141^3 + 291^3 = 198^3 + 270^3 = 756^2 + 72^4 = 5076^2 + 36^4.
112416325632 is a term because 112416325632 = 27445392*2^12.
		

Crossrefs

Extensions

a(2)-a(18) from Giovanni Resta, Jun 19 2016

A303377 Numbers of the form a^7 + b^8, with integers a, b > 0.

Original entry on oeis.org

2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803
Offset: 1

Views

Author

M. F. Hasler, May 04 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.

Examples

			The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ...
		

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6), A303376 (a^6 + b^7).

Programs

  • Mathematica
    With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]]
  • PARI
    is(n,k=7,m=8)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303377_vec(L=10^7,k=7,m=8,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L
Previous Showing 31-32 of 32 results.