A355902 Start with a 2 X n array of squares, join every vertex on top edge to every vertex on bottom edge; a(n) = one-half the number of cells.
0, 3, 10, 26, 56, 112, 196, 331, 522, 790, 1138, 1615, 2204, 2975, 3910, 5041, 6388, 8047, 9958, 12262, 14894, 17920, 21346, 25347, 29796, 34875, 40522, 46854, 53826, 61716, 70274, 79883, 90380, 101875, 114346, 127981, 142612, 158737, 176086, 194827, 214852, 236717, 259906, 285124, 311970, 340588, 370990, 403819, 438440, 475556
Offset: 0
Keywords
Links
- Scott R. Shannon, Image for a(4) = 56. Note in this and other images the entire 2xn array is shown so the number of cells is twice a(n).
- Scott R. Shannon, Image for a(6) = 196.
- Scott R. Shannon, Image for a(10) = 1138.
- Scott R. Shannon, Image for a(15) = 5041.
- N. J. A. Sloane, Illustration for a(2) = 10.
- N. J. A. Sloane, Illustration for a(3) = 26.
Crossrefs
The following nine sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n; A355902(n) = n + A306302(n)/2. - N. J. A. Sloane, Sep 06 2022
Formula
a(n) = A356790(2,n+2)/2 - 2.
Comments