cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A334117 Odd numbers with abundancy >= 3/2; that is, numbers m such that sigma(m) >= 3m/2.

Original entry on oeis.org

15, 21, 45, 63, 75, 99, 105, 117, 135, 147, 153, 165, 171, 189, 195, 207, 225, 231, 255, 273, 285, 297, 315, 345, 351, 357, 375, 399, 405, 429, 435, 441, 459, 465, 483, 495, 513, 525, 555, 561, 567, 585, 609, 615, 621, 627, 645, 651, 663, 675, 693, 705, 735, 741, 759
Offset: 1

Views

Author

Keywords

Comments

The density of this sequence exists and is positive. If m is in this sequence, then so is mk, where k is a positive odd number (see A334118).
The numbers of terms that do not exceed 10^k, for k = 2, 3, ..., are 6, 73, 700, 7179, 70759, 709928, 7101533, 70999783, 709865878, 7098956986, ... . Apparently, the asymptotic density of this sequence equals 0.0709... . - Amiram Eldar, Dec 28 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 1000, 2], DivisorSigma[-1, #] >= 3/2 &] (* Amiram Eldar, Dec 28 2024 *)
  • PARI
    is(n)=n%2 && sigma(n,-1)>=3/2
    
  • PARI
    forfactored(n=1,10^4, if(sigma(n,-1)>=3/2 && n[1]%2, print1(n[1]", ")))

A334118 Primitive terms of A334117: odd numbers m such that sigma(m, -1) >= 3/2 with no proper divisors sharing this property.

Original entry on oeis.org

15, 21, 99, 117, 153, 171, 207, 429, 561, 627, 663, 741, 759, 783, 837, 957, 999, 1023, 1107, 1161, 1269, 1431, 1593, 1647, 1809, 1917, 1925, 1971, 2133, 2275, 2695, 2975, 3185, 4235, 5005, 6545, 6723, 7209, 7315, 7735, 7857, 8091, 8181, 8343, 8645, 8667, 8829, 8855
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^4, 2], DivisorSigma[-1, #] >= 3/2 && Max[DivisorSigma[-1, Most[Divisors[#]]]] < 3/2 &] (* Amiram Eldar, Dec 28 2024 *)
  • PARI
    list(lim)=my(v=List(), k); forfactored(n=15,lim\1, if(sigma(n,-1)>=3/2 && (k=n[1])%2, for(i=1,#v, if(k%v[i]==0, next(2))); listput(v,k))); Vec(v)
Previous Showing 11-12 of 12 results.