cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A307162 a(n) is the smallest k such that A319100(k) = A025610(n).

Original entry on oeis.org

1, 3, 8, 7, 24, 21, 120, 56, 1320, 63, 168, 22440, 252, 840, 516120, 504, 9240, 819, 14967480, 2184, 157080, 3276, 613666680, 10920, 3612840, 6552, 28842333960, 120120, 15561, 104772360, 32760, 1528643699880, 2042040, 62244, 4295666760, 207480, 90189978292920, 46966920, 124488
Offset: 1

Views

Author

Jianing Song, Mar 27 2019

Keywords

Comments

A025610 is the range of A319100.
Let b = A319100. Note that:
- if k is an odd number, then b(2*k) = b(k), b(4*k) = 2*b(k), b(2^e*k) = 4*b(k) for e >= 3;
- if k is not divisible by 3, then b(3*k) = 2*b(k), b(3^e*k) = 6*b(k) for e >= 2;
- for all primes p > 3, if k is not divisible by p, then b(p^e*k) = b(p*k).
As a result, it is easy to see that for every n, a(n) is not congruent to 2 modulo 4 and is not divisible by 16 or 27 or p^2 for any prime p > 3.

Crossrefs

Programs

  • PARI
    isA025610(n) = omega(6*n)==2&&valuation(n,2)>=valuation(n,3)
    b(n) = if(isA025610(n), i=1; while(A319100(i)!=n, i++); i)
    for(n=1, 216, if(isA025610(n), print1(b(n), ", "))) \\ See A319100 for its program
    
  • PARI
    p(j) = my(t=0,v=vector(j)); for(k=1, oo, if(prime(k)%6==1, t++; v[t]=prime(k)); if(t==j, return(v)))
    q(i) = my(t=0,v=vector(i)); for(k=1, oo, if(prime(k)%6==5, t++; v[t]=prime(k)); if(t==i, return(v)))
    b(i,j) = {
    if(j<=1 && i<=2, my(M=[1,3,8;7,21,56]); return(M[j+1,i+1]));
    if(j==0 && i>=3, my(Q=q(i-3)); return(24*prod(k=1, i-3, Q[k])));
    if(j>=2 && i<=2, my(P=p(j-1), w=[9,36,72]); return(w[i+1]*prod(k=1, j-1, P[k])));
    if(j>=1 && i>=3, my(P=p(j), Q=q(i-2)); return(prod(k=1, j-1, P[k])*8*prod(k=1, i-3, Q[k])*min(9*Q[i-2], 3*P[j])));
    }
    list(lim) = my(v=A025610(lim), u=vector(#v)); for(k=1, #v, my(i=valuation(v[k],2)-valuation(v[k],3), j=valuation(v[k],3)); u[k]=b(i,j)); u \\ Jianing Song, Jun 04 2019, See A025610 for its program

Formula

Let p(j) = A002476(j), q(i) = A007528(i), P(j) = Product_{k=1..j} p(k) = A121940(j) if j > 0, Q(i) = Product_{k=1..i} q(k) = A057130(i) if i > 0. If A025610(n) = 2^i*6^j, then:
(a) if i = 0, then a(n) = 1 if j = 0, 7 if j = 1 and 9*P(j-1) if j >= 2;
(b) if i = 1, then a(n) = 3 if j = 0, 21 if j = 1 and 36*P(j-1) if j >= 2;
(c) if i = 2, then a(n) = 8 if j = 0, 56 if j = 1 and 72*P(j-1) if j >= 2;
(d) if i >= 3, then a(n) = 24*Q(i-3) if j = 0 and P(j-1)*8*Q(i-3)*min{9*q(i-2), 3*p(j)} if j >= 1. [Rewritten by Jianing Song, Jun 04 2019]

A220171 An ordered subset of primitive values of x^2 + x*y + y^2 where at least two ordered pairs (x1,y1) and (x2,y2) with x1 != x2, y1 != y2 and gcd(x1,y1) = gcd(x2,y2) = 1 yield identical primitive values.

Original entry on oeis.org

91, 133, 217, 247, 259, 273, 301, 399, 403, 427, 469, 481, 511, 553, 559, 589, 637, 651, 679, 703, 721, 741, 763, 777, 793, 817, 871, 889, 903, 931, 949, 973, 1027, 1057, 1099, 1141, 1147, 1159, 1183, 1209, 1261, 1267, 1273, 1281, 1333, 1339, 1351
Offset: 1

Views

Author

Frank M Jackson, Dec 06 2012

Keywords

Comments

The primitive values of x^2 + x*y + y^2 where x >= y >= 0 and gcd(x, y) = 1 are given by A034017. However there are incidents in the sequence A034017 where different values of (x, y) yield the same primitive value. Furthermore, the number of solutions for a given primitive value equates to a power of 2. See A121940.

Examples

			a(3) = 217 because it is the 3rd incident in ascending order of the primitive x^2 + x*y + y^2 that yields multiple solutions. This happens when (x, y) = (9, 8) and (13, 3).
		

Crossrefs

Programs

  • Mathematica
    maxLen = 100; sol[k_] := Solve[m^2 + m*n + n^2 == k && m > n > 0 && GCD[m, n] == 1, Integers]; getlist[l_] := Which[Length[sol[l]] == 0, {}, True, {m, n} /. sol[l]]; list = {}; p = 1; While[Length[list] < maxLen, (While[Length[getlist[p]] < 2, p++]; list = Append[list, p]; p++)]; list

Formula

n such that n = x1^2 + x1*y1 + y1^2 = x2^2 + x2*y2 + y2^2 with x1 != x2, y1 != y2 and gcd(x1,y1) = gcd(x2,y2) = 1.
Previous Showing 11-12 of 12 results.