cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A254662 Numbers of words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,...,4}.

Original entry on oeis.org

1, 8, 59, 437, 3236, 23963, 177449, 1314032, 9730571, 72056093, 533584364, 3951258827, 29259564881, 216670730648, 1604473809179, 11881328856197, 87982723420916, 651523050515003, 4824609523867769, 35726835818619392, 264561679301939051, 1959112262569431533
Offset: 0

Views

Author

Milan Janjic, Feb 04 2015

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 8^n else 7*Self(n)+3*Self(n-1): n in [0..20]];
    
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 3 a[n - 2]}, a[n], {n, 0, 20}]
  • PARI
    Vec((1+x)/(1-7*x-3*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016

Formula

G.f.: (1 + x)/(1 - 7*x -3*x^2).
a(n) = 7*a(n-1) + 3*a(n-2) with n>1, a(0) = 1, a(1) = 8.
a(n) = (2^(-1-n) * ((7-sqrt(61))^n * (-9+sqrt(61)) + (7+sqrt(61))^n * (9+sqrt(61)))) / sqrt(61). - Colin Barker, Sep 08 2016

A287811 Number of septenary sequences of length n such that no two consecutive terms have distance 5.

Original entry on oeis.org

1, 7, 45, 291, 1881, 12159, 78597, 508059, 3284145, 21229047, 137226717, 887047443, 5733964809, 37064931183, 239591481525, 1548743682699, 10011236540769, 64713650292711, 418315611378573, 2704034619149571, 17479154549033145, 112987031151647583
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2) = 49-4 = 45 sequences contain every combination except these four: 05, 50, 16, 61.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, 3}, {1,7}, 40]
  • Python
    def a(n):
     if n in [0, 1]:
      return [1, 7][n]
     return 6*a(n-1)-3*a(n-2)

Formula

a(n) = 6*a(n-1) + 3*a(n-2), a(0)=1, a(1)=7.
G.f.: (1 + x)/(1 - 6*x - 3*x^2).
a(n) = A090018(n-1)+A090018(n). - R. J. Mathar, Oct 20 2019

A287838 Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 8.

Original entry on oeis.org

1, 11, 115, 1205, 12625, 132275, 1385875, 14520125, 152130625, 1593906875, 16699721875, 174966753125, 1833166140625, 19206495171875, 201230782421875, 2108340300078125, 22089556912890625, 231437270629296875, 2424820490857421875, 25405391261720703125
Offset: 0

Views

Author

David Nacin, Jun 07 2017

Keywords

Comments

In general, the number of sequences on {0,1,...,10} such that no two consecutive terms have distance 6+k for k in {0,1,2,3,4} has generating function (-1 - x)/(-1 + 10*x + (2*k+1)*x^2).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, 5}, {1, 11, 115}, 20]
  • PARI
    Vec((1 + x) / (1 - 10*x - 5*x^2) + O(x^40)) \\ Colin Barker, Nov 25 2017
  • Python
    def a(n):
     if n in [0,1,2]:
      return [1, 11, 115][n]
     return 10*a(n-1) + 5*a(n-2)
    

Formula

For n > 2, a(n) = 10*a(n-1) + 5*a(n-2), a(0)=1, a(1)=11, a(2)=115.
G.f.: (-1 - x)/(-1 + 10*x + 5*x^2).
a(n) = (((5-sqrt(30))^n*(-6+sqrt(30)) + (5+sqrt(30))^n*(6+sqrt(30)))) / (2*sqrt(30)). - Colin Barker, Nov 25 2017

A287805 Number of quinary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 5, 19, 73, 281, 1083, 4175, 16097, 62065, 239307, 922711, 3557761, 13717913, 52893147, 203943935, 786361409, 3032030689, 11690820555, 45077144455, 173807214241, 670161078089, 2583988659867, 9963272432111, 38416111919777, 148123788152017, 571131629935179
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=19=25-6 sequences contain every combination except these six: 02,20,13,31,24,42.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 1, -6}, {1, 5, 19, 73}, 40]
  • Python
    def a(n):
     if n in [0,1,2,3]:
      return [1,5,19,73][n]
     return 4*a(n-1)+a(n-2)-6*a(n-3)

Formula

For n>0, a(n) = 4*a(n-1) + a(n-2) - 6*a(n-3), a(1)=5, a(2)=19, a(3)=73.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 4*x - x^2 + 6*x^3).

A287806 Number of senary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 6, 26, 114, 500, 2194, 9628, 42252, 185422, 813722, 3571010, 15671340, 68773514, 301811860, 1324498252, 5812546998, 25508302906, 111942925778, 491260382084, 2155891150146, 9461106209228, 41519967599596, 182209952129086, 799626506818554, 3509152727035810
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=26=36-10 sequences contain every combination except these ten: 01,10,12,21,23,32,34,43,45,54.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -2, -3}, {1, 6, 26, 114}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3]:
      return [1, 6, 26, 114][n]
     return 5*a(n-1)-2*a(n-2)-3*a(n-3)

Formula

For n>3, a(n) = 5*a(n-1) - 2*a(n-2) - 3*a(n-3), a(1)=6, a(2)=26, a(3)=114.
G.f.: (1 + x - 2*x^2 - x^3)/(1 - 5*x + 2*x^2 + 3*x^3).

A287807 Number of senary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 6, 28, 132, 624, 2952, 13968, 66096, 312768, 1480032, 7003584, 33141312, 156826368, 742110336, 3511703808, 16617560832, 78635142144, 372105487872, 1760822074368, 8332299518976, 39428864667648, 186579390892032, 882903157346304, 4177942598725632
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=28=36-8 sequences contain every combination except these eight: 02,20,13,31,24,42,35,53.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -6}, {1, 6, 28}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2]:
      return [1, 6, 28][n]
     return 6*a(n-1)-6*a(n-2)

Formula

For n>2, a(n) = 6*a(n-1) - 6*a(n-2), a(1)=6, a(2)=28.
G.f.: (1 - 2*x^2)/(1 - 6*x + 6*x^2).

A287808 Number of septenary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 7, 37, 197, 1049, 5587, 29757, 158491, 844153, 4496123, 23947233, 127547675, 679344041, 3618320227, 19271886609, 102645866251, 546712113769, 2911896468083, 15509334488577, 82605772190267, 439974623297369, 2343391557436483, 12481365289466289
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=37=49-12 sequences contain every combination except these twelve: 01,10,12,21,23,32,34,43,45,54,56,65.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -8, -6, 6}, {1, 7, 37, 197, 1049}, 40]
  • Python
    def a(n):
     if n in [0,1,2,3,4]:
      return [1, 7, 37, 197, 1049][n]
     return 7*a(n-1)-8*a(n-2)-6*a(n-3)+6*a(n-4)

Formula

For n>4, a(n) = 7*a(n-1) - 8*a(n-2) - 6*a(n-3) + 6*a(n-4), a(1)=7, a(2)=37, a(3)=197, a(4)=1049.
G.f.: (1-4*x^2+2*x^4)/(1-7*x+8*x^2+6*x^3-6*x^4).

A287809 Number of septenary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 7, 39, 219, 1231, 6921, 38913, 218789, 1230147, 6916539, 38888455, 218651553, 1229375193, 6912200477, 38864063403, 218514412227, 1228604118319, 6907865088537, 38839687552689, 218377358251349, 1227833528067027, 6903532420748427, 38815326992539159
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=49-10=39 sequences contain every combination except these ten: 02,20,13,31,24,42,35,53,46,64.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, 0, -13, 6}, {1, 7, 39, 219, 1231}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3, 4]:
      return [1, 7, 39, 219, 1231][n]
     return 6*a(n-1)-13*a(n-3)+6*a(n-4)

Formula

For n>4, a(n) = 6*a(n-1) - 13*a(n-3) + 6*a(n-4), a(1)=7, a(2)=39, a(3)=219, a(4)=1231.
G.f.: (1 + x - 3*x^2 - 2*x^3 + 2*x^4)/(1 - 6*x + 13*x^3 - 6*x^4).

A287810 Number of septenary sequences of length n such that no two consecutive terms have distance 3.

Original entry on oeis.org

1, 7, 41, 241, 1417, 8333, 49005, 288193, 1694833, 9967141, 58615749, 344713305, 2027224169, 11921900829, 70111496093, 412318635697, 2424804301985, 14260029486677, 83861794865077, 493182755657289, 2900358033942041, 17056713010658765, 100308808541321741
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2) = 49-8 = 41 sequences contain every combination except these eight: 03, 30, 14, 41, 25, 52, 36, 63.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, 1, -10}, {1, 7, 41, 241}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3]:
      return [1, 7, 41, 241][n]
     return 6*a(n-1)+a(n-2)-10*a(n-3)

Formula

For n>3, a(n) = 6*a(n-1) + a(n-2) - 10*a(n-3), a(0)=1, a(1)=7, a(2)=41, a(3)=241.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 6*x - x^2 + 10*x^3).

A287812 Number of octonary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 8, 50, 314, 1972, 12386, 77796, 488636, 3069120, 19277130, 121079578, 760500364, 4776699874, 30002433636, 188445170924, 1183623397912, 7434334035874, 46695023649050, 293291264969380, 1842161313673506, 11570608166423524, 72674945645197500
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 64 - 14 = 50 sequences contain every combination except these fourteen: 01,10,12,21,23,32,34,43,45,54,56,65,67,76.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -3, -10, 3}, {1, 8, 50, 314, 1972}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3, 4]:
      return [1, 8, 50, 314, 1972][n]
     return 7*a(n-1)-3*a(n-2)-10*a(n-3)+3*a(n-4)

Formula

For n>4, a(n) = 7*a(n-1) - 3*a(n-2) - 10*a(n-3) + 3*a(n-2), a(0)=1, a(1)=8, a(2)=50, a(3)=314, a(4)=1972.
G.f.: (-1 - x + 3 x^2 + 2 x^3 - x^4)/(-1 + 7 x - 3 x^2 - 10 x^3 + 3 x^4).
Previous Showing 31-40 of 57 results. Next