A287813
Number of octonary sequences of length n such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 8, 52, 340, 2224, 14548, 95164, 622504, 4072036, 26636740, 174241072, 1139777284, 7455717772, 48770692552, 319027694548, 2086881784180, 13651089405616, 89296980486772, 584125595190556, 3820988224873576, 24994540788543364, 163498820845182820
Offset: 0
For n=2 the a(2) = 64 - 12 = 52 sequences contain every combination except these twelve: 02,20,13,31,24,42,35,53,46,64,57,75.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{7, -3}, {1, 8, 52}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 8, 52][n]
return 7*a(n-1)-3*a(n-2)
A287814
Number of octonary sequences of length n such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 8, 54, 366, 2482, 16834, 114178, 774426, 5252642, 35626714, 241642738, 1638972746, 11116542082, 75399367194, 511405842898, 3468675479466, 23526734684322, 159573084361274, 1082324835734258, 7341006503296586, 49791314679463362, 337715954398900954
Offset: 0
For n=2 the a(2) = 64 - 10 = 54 sequences contain every combination except these ten: 03,30,14,41,25,52,36,63,47,74.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{7, 0, -10}, {1, 8, 54, 366}, 40]
-
def a(n):
if n in [0, 1, 2, 3]:
return [1, 8, 54, 366][n]
return 7*a(n-1)-10*a(n-3)
A287815
Number of octonary sequences of length n such that no two consecutive terms have distance 7.
Original entry on oeis.org
1, 8, 62, 482, 3746, 29114, 226274, 1758602, 13667858, 106226618, 825593474, 6416514026, 49869159026, 387583197338, 3012297335522, 23411580532682, 181954847741906, 1414153417389434, 10990803008177474, 85420541561578922, 663888608980117298, 5159743512230294618
Offset: 0
For n=2 the a(2) = 64 - 2 = 62 sequences contain every combination except these two: 07,70.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{7, 6}, {1, 8}, 40]
-
def a(n):
if n in [0, 1]:
return [1, 8][n]
return 7*a(n-1)+6*a(n-2)
A287816
Number of nonary sequences of length n such that no two consecutive terms have distance 1.
Original entry on oeis.org
1, 9, 65, 471, 3413, 24733, 179233, 1298853, 9412437, 68209395, 494295113, 3582023557, 25957960001, 188110345129, 1363185009337, 9878634630295, 71587804656589, 518777540353453, 3759441118026705, 27243657291488469, 197427447142906157, 1430703538380753875
Offset: 0
For n=2 the a(2) = 81 - 16 = 65 sequences contain every combination except these sixteen: 01,10,12,21,23,32,34,43,45,54,56,65,67,76,78,87.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{9, -11, -15, 19, 1}, {1, 9, 65 , 471, 3413}, 40]
-
def a(n):
if n in [0, 1, 2, 3, 4]:
return [1, 9, 65 , 471, 3413][n]
return 9*a(n-1)-11*a(n-2)-15*a(n-3)+19*a(n-4)+a(n-5)
A287817
Number of nonary sequences of length n such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 9, 67, 501, 3747, 28025, 209609, 1567743, 11725731, 87701095, 655949055, 4906086571, 36694443381, 274451368893, 2052723708275, 15353082914309, 114831408642039, 858866749063989, 6423783365292409, 48045861327359751, 359352839194448551, 2687733333725785179
Offset: 0
For n=2 the a(2) = 81 - 14 = 67 sequences contain every combination except these fourteen: 02,20,13,31,24,42,35,53,46,64,57,75,68,86.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{8, -1, -23, 10, 1}, {1, 9, 67 , 501, 3747}, 40]
-
def a(n):
if n in [0, 1, 2, 3, 4]:
return [1, 9, 67 , 501, 3747][n]
return 8*a(n-1)-a(n-2)-23*a(n-3)+10*a(n-4)+a(n-5)
A287818
Number of nonary sequences of length n such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 9, 69, 531, 4089, 31491, 242529, 1867851, 14385369, 110789811, 853254609, 6571393371, 50609994249, 389776014531, 3001884188289, 23119197549291, 178053936060729, 1371293449053651, 10561101680875569, 81336980637343611, 626421808927336809, 4824426473972595171
Offset: 0
For n=2 the a(2) = 81 - 12 = 69 sequences contain every combination except these twelve: 03,30,14,41,25,52,36,63,47,74,58,85.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{9, -10}, {1, 9, 69}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 9, 69][n]
return 9*a(n-1)-10*a(n-2)
A287826
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 10, 84, 708, 5968, 50308, 424080, 3574860, 30134944, 254028100, 2141377008, 18051134892, 152165391616, 1282706408548, 10812811724688, 91148603152524, 768354066287200, 6476983198439812, 54598931916359472, 460251829451302764, 3879778213203474880
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{10, -13, -2}, {1, 10, 84}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 10, 84][n]
return 10*a(n-1)-13*a(n-2)-2*a(n-3)
A287827
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 10, 86, 742, 6404, 55274, 477082, 4117804, 35541714, 306768722, 2647791524, 22853698754, 197255539962, 1702558017644, 14695170558994, 126837403201602, 1094762853302164, 9449150445514434, 81557794797885642, 703944119701429084, 6075903902137709074
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, -1, -20, 10}, {1, 10, 86, 742, 6404}, 30]
-
def a(n):
if n in [0, 1, 2, 3, 4]:
return [1, 10, 86, 742, 6404][n]
return 9*a(n-1)-a(n-2)-20*a(n-3)+10*a(n-4)
A287828
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 4.
Original entry on oeis.org
1, 10, 88, 776, 6844, 60364, 532412, 4695892, 41417932, 365307620, 3222026092, 28418383780, 250651147340, 2210751960772, 19498910274028, 171981076403492, 1516879160180620, 13378927697789188, 118002614210453804, 1040787219651555556, 9179779989094951372
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 0, -14}, {1, 10, 88, 776}, 30]
-
def a(n):
if n in [0, 1, 2, 3]:
return [1, 10, 88, 776][n]
return 9*a(n-1)-14*a(n-3)
A287829
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 6.
Original entry on oeis.org
1, 10, 92, 848, 7816, 72040, 663992, 6120008, 56408056, 519912520, 4792028792, 44168084168, 407096815096, 3752207504200, 34584061167992, 318760965520328, 2938016812018936, 27079673239211080, 249593092776937592, 2300497181470860488, 21203660818791619576
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 2}, {1, 10}, 30]
-
def a(n):
if n in [0, 1]:
return [1, 10][n]
return 9*a(n-1)+2*a(n-2)
Comments