cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A127325 Hypertetrahedron with T(W,X,Y,Z) = Y - Z.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Together with A127324, A127326 and A127327 might enable reading "by antidiagonals" of hypercube arrays as 4-dimensional analog of A056558, A056560 and A056559 with cubical arrays.

Examples

			a(23)=1 because A127323(23) - A127324(23) = 1.
See A127327 for a table of A127324, A127325, A127326, A127327.
		

Crossrefs

Formula

a(n) = A127323(n) - A127324(n).

A127326 Hypertetrahedron with T(W,X,Y,Z) = X - Y.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Together with A127324, A127325 and A127327 might enable reading "by antidiagonals" of hypercube arrays as 4-dimensional analog of A056558, A056560 and A056559 with cubical arrays.

Examples

			a(23)=0 because A127322(23) - A127323(23) = 0.
See A127327 for a table of A127324, A127325, A127326, A127327.
		

Crossrefs

Formula

a(n) = A127322(n) - A127323(n).

A127327 Hypertetrahedron with T(W,X,Y,Z) = W - X.

Original entry on oeis.org

0, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Together with A127324, A127325 and A127326 might enable reading "by antidiagonals" of hypercube arrays as 4-dimensional analog of A056558, A056560 and A056559 with cubical arrays.

Examples

			a(23)=1 because A127321(23) - A127322(23) = 1.
Table of A127324, A127325, A127326, A127327:
   n w,x,y,z
   0 0,0,0,0
   1 0,0,0,1
   2 0,0,1,0
   3 0,1,0,0
   4 1,0,0,0
   5 0,0,0,2
   6 0,0,1,1
   7 0,1,0,1
   8 1,0,0,1
   9 0,0,2,0
  10 0,1,1,0
  11 1,0,1,0
  12 0,2,0,0
  13 1,1,0,0
  14 2,0,0,0
  15 0,0,0,3
  16 0,0,1,2
  17 0,1,0,2
  18 1,0,0,2
  19 0,0,2,1
  20 0,1,1,1
  21 1,0,1,1
  22 0,2,0,1
  23 1,1,0,1
		

Crossrefs

Formula

a(n) = A127321(n) - A127322(n).

A194885 Write n = C(i,4)+C(j,3)+C(k,2)+C(l,1) with i>j>k>l>=0; let L[n] = [i,j,k,l]; sequence gives list of quadruples L[n], n >= 0.

Original entry on oeis.org

3, 2, 1, 0, 4, 2, 1, 0, 4, 3, 1, 0, 4, 3, 2, 0, 4, 3, 2, 1, 5, 2, 1, 0, 5, 3, 1, 0, 5, 3, 2, 0, 5, 3, 2, 1, 5, 4, 1, 0, 5, 4, 2, 0, 5, 4, 2, 1, 5, 4, 3, 0, 5, 4, 3, 1, 5, 4, 3, 2, 6, 2, 1, 0, 6, 3, 1, 0, 6, 3, 2, 0, 6, 3, 2, 1, 6, 4, 1, 0, 6, 4, 2, 0, 6, 4, 2, 1, 6, 4, 3, 0, 6, 4, 3, 1, 6, 4, 3, 2, 6, 5, 1, 0, 6, 5, 2, 0, 6, 5, 2, 1, 6, 5, 3, 0, 6, 5, 3, 1, 6
Offset: 0

Views

Author

N. J. A. Sloane, Sep 04 2011

Keywords

Comments

Each n >= 0 has a unique representation as n = C(i,4)+C(j,3)+C(k,2)+C(l.1) with i>j>k>l>=0. This is the combinatorial number system of degree t = 4, where we get [A194882, A194883, A194884, A127324]. For degree t = 3 see A194847.

Examples

			List of quadruples begins:
[3, 2, 1, 0]
[4, 2, 1, 0]
[4, 3, 1, 0]
[4, 3, 2, 0]
[4, 3, 2, 1]
[5, 2, 1, 0]
[5, 3, 1, 0]
[5, 3, 2, 0]
[5, 3, 2, 1]
[5, 4, 1, 0]
[5, 4, 2, 0]
...
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

The four columns are [A194882, A194883, A194885, A127324], or equivalently [A127321+3, A127322+2, A127323+1, A127324].
Previous Showing 11-14 of 14 results.