A248238
Egyptian fraction representation of sqrt(8) (A010466) using a greedy function.
Original entry on oeis.org
2, 2, 4, 13, 665, 3467111, 21396320062803, 658294037732639489281287503, 22388829144690900907571301740725846339553919136567283158, 522702581366233755060474792093646176756253098085471164612763539572950704431022333880928617340303584572474648760
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 8]]
A248240
Egyptian fraction representation of sqrt(11) (A010468) using a greedy function.
Original entry on oeis.org
3, 4, 16, 243, 104559, 25176928409, 26586186736052347315834, 1862816215759124563815793524962166009780011752, 5214712907768239185916350444296489272388117885310572145230445264540008760076034857528421553
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 11]]
A248241
Egyptian fraction representation of sqrt(12) (A010469) using a greedy function.
Original entry on oeis.org
3, 3, 8, 174, 47270, 3322246062, 13585339584457844199, 266643312158266377656241697792775202384, 221110316712057155914682414678073188192934894445719392090279403577596961625414
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 12]]
A248243
Egyptian fraction representation of sqrt(14) (A010471) using a greedy function.
Original entry on oeis.org
3, 2, 5, 25, 604, 568947, 524109421430, 456412587974094208278324, 217923503007735559214372603301923745039374715408, 53829867761684622028477476025136774072620218179339699337234480313626745601639126196448075512614
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 14]]
A248244
Egyptian fraction representation of sqrt(15) (A010472) using a greedy function.
Original entry on oeis.org
3, 2, 3, 26, 842, 1210718, 3125731485713, 19754948045006045983659938, 1065761639370207788402744631308304462734917602085737, 324026619188969581072902747191745217929877633476958459802312813323913819842709323919885352524528244937458
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 15]]
A248246
Egyptian fraction representation of sqrt(18) (A010474) using a greedy function.
Original entry on oeis.org
4, 5, 24, 1027, 3219387, 102715635003972, 28595657331015533671660837004, 1215572475769570408109978391934299568566509985905302163092, 2006120697781748129559395265597556700767017998650179835542888817906954377068504244660639847221485156172682330027607
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 18]]
A248247
Egyptian fraction representation of sqrt(19) (A010475) using a greedy function.
Original entry on oeis.org
4, 3, 40, 1769, 3133987, 24555734311137, 5553769558933640154963528048, 58425567381851662534231519139184106852906758833242204348, 8289351943967938706857419188398816898988729770105649746642711092034483624446711151502281270880844114102012375418
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 19]]
A248248
Egyptian fraction representation of sqrt(20) (A010476) using a greedy function.
Original entry on oeis.org
4, 3, 8, 73, 9617, 111131795, 26084503201670555, 4157115685705509978962832510685264, 147322611763368949503218439363472434087529649552239912252006589221170, 71615688159358613181735412731094718668653530665367791449989367208307390123881747858538896669229709245658779872053034609094278277577821587
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 20]]
A248251
Egyptian fraction representation of sqrt(23) (A010479) using a greedy function.
Original entry on oeis.org
4, 2, 4, 22, 2653, 21700059, 708858809575725, 1165753299339083780718554998198, 2548635100713650540210812530804809217002270820405582029350843, 9424721747010820452946739585309019492765231528601856929750632998033892638026047178801699999141027371964867528932823084053
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[
iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 23]]
A248252
Egyptian fraction representation of sqrt(24) (A010480) using a greedy function.
Original entry on oeis.org
4, 2, 3, 16, 318, 667493, 520599832812, 1406502882894868771562029, 5482100301108869539661068478608291549480253128390, 195012261486920753888173091467257385308263858947121366558714224718185929485569758493733677353323155
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 24]]