A248268
Egyptian fraction representation of sqrt(42) (A010496) using a greedy function.
Original entry on oeis.org
6, 3, 7, 220, 209746, 1800026104632, 11289682294671072755879655, 1247832270676194041105480584245717817404868332358363, 5623554373314472317858205865619051220489843727752125404940182021329874216730979924009375686764591034334
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 42]]
A248269
Egyptian fraction representation of sqrt(43) (A010497) using a greedy function.
Original entry on oeis.org
6, 2, 18, 532, 305858, 137859230710, 22012211318177566410441, 1147928569154887244380386940705198857524244457, 54505440157936785019731226309482186897275025107764309863984976644953861019275801793173245974
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 43]]
A248270
Egyptian fraction representation of sqrt(44) (A010498) using a greedy function.
Original entry on oeis.org
6, 2, 8, 122, 18919, 402739144, 764123173937021975, 2148666191962903360885805290461855276, 8622580654686644746427953833014483269744901669599325824509666827330296874
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 44]]
A248273
Egyptian fraction representation of sqrt(47) (A010501) using a greedy function.
Original entry on oeis.org
6, 2, 3, 45, 10097, 180933939, 70214804893433857, 24596197522004292913199742834240369, 851917396155337556711167562167009352482986581505723891411145951010937, 1830843559366860042528367793031819716270540620095563249767306742965459078226069734667092696644523226923832775331940549734586475295256730688
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[
iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 47]]
A248274
Egyptian fraction representation of sqrt(48) (A010502) using a greedy function.
Original entry on oeis.org
6, 2, 3, 11, 253, 121406, 26366884520, 849309519459745289215, 1275274072254463235178765644812100983170793, 6840927687383150447046638299623716679409134458251745775753167712124043749551513939746
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 48]]
A248276
Egyptian fraction representation of sqrt(51) (A010504) using a greedy function.
Original entry on oeis.org
7, 8, 61, 28583, 11215712908, 163912730694765446902, 323312653298355913241854107936424272297052, 282221573696620922018917798450701835109135899750274145244297035015729916105092332416
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 51]]
A248277
Egyptian fraction representation of sqrt(52) (A010505) using a greedy function.
Original entry on oeis.org
7, 5, 91, 8808, 147334267, 630308457230044767, 705412662885103424818861300802350580, 5393679030808484908733796582654864706316301359628528840178094089020230098
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 52]]
A248278
Egyptian fraction representation of sqrt(53) (A010506) using a greedy function.
Original entry on oeis.org
7, 4, 34, 1433, 3473810, 16229351336487, 949514635841230182654078450, 2889844410885034994651072554166092838631734010754362047, 90303610423494587890114446343335205731154007285533876023746429382538260256932049359769872513411427600496627202
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 53]]
A248279
Egyptian fraction representation of sqrt(54) (A010507) using a greedy function.
Original entry on oeis.org
7, 3, 67, 4751, 25076431, 1253373011645810, 9187269148593176940086772749458, 498651977464932900685397060435928260390239175775532045711576034, 321776209073611476881274134051635561805771857820185011672099181310492331070886792488196910194328794077954530415887963244506932
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 54]]
A248280
Egyptian fraction representation of sqrt(55) (A010508) using a greedy function.
Original entry on oeis.org
7, 3, 13, 169, 40134, 1830451404, 6293054590385574716, 99455005060617253985959291400980656073, 14444603640289593121113624113291244368730444113988502168325108818988403980391
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 55]]