A248281
Egyptian fraction representation of sqrt(56) (A010509) using a greedy function.
Original entry on oeis.org
7, 3, 7, 141, 31154, 5919757544, 160210422116327440975, 51936028072305364257094751268091425897982, 4468374619865723526161303689130955516769923438522458566697540434310939905017570043
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 56]]
A248282
Egyptian fraction representation of sqrt(57) (A010510) using a greedy function.
Original entry on oeis.org
7, 2, 21, 452, 333526, 239840839427, 213854001335207704440895, 285250080311453944844806600568111651628374758476, 116331150526334053652977740551831381838315865368775202070425604169497427887617729415451917178949
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 57]]
A248283
Egyptian fraction representation of sqrt(58) (A010511) using a greedy function.
Original entry on oeis.org
7, 2, 9, 215, 92320, 13695244912, 368745173102931073689, 150311820851633539318312286585042617903984, 29781104525890630329534612719719835579952306842149201572137004326202620882167834150
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 58]]
A248284
Egyptian fraction representation of sqrt(59) (A010512) using a greedy function.
Original entry on oeis.org
7, 2, 6, 70, 5172, 55202902, 8951438750970150, 99495402337297602079238688437886, 15492800774386064339112007474585245303291252482336052648764111003, 391698881553953026777765090845306600440609784819171044804973696937372852634612474031212566575806121439678866692229277539673721524
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 59]]
A248286
Egyptian fraction representation of sqrt(61) (A010514) using a greedy function.
Original entry on oeis.org
7, 2, 4, 17, 702, 607877, 1343651924022, 4320622614714270261311118, 32109651275722538015654226404724112550695835225776, 2887634404082286927710711082091702089862802645035135042777568254515668100623050781361931122852713355
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 61]]
A248287
Egyptian fraction representation of sqrt(62) (A010515) using a greedy function.
Original entry on oeis.org
7, 2, 3, 25, 1483, 4313226, 217223937382030, 165021459996112229693378902726, 190678813907175651157329403848309114198709593621065210721452, 47297173716207795520732599463808376437483496369104651889972118237012796007094238114464594140905135341922378258897840741
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 62]]
A248288
Egyptian fraction representation of sqrt(63) (A010516) using a greedy function.
Original entry on oeis.org
7, 2, 3, 10, 256, 69688, 5330178475, 685643579227613855733, 19857919470304339362673575257858955364290957, 4322562711957148145852339662715119494243446939653452977452988955819120724647597129517346
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 63]]
A248290
Egyptian fraction representation of sqrt(66) (A010518) using a greedy function.
Original entry on oeis.org
8, 9, 78, 9365, 7225463317, 1286105510518248187999, 9221613893925388050026847069759756702671692, 6617240531535645994094212411930391575264080824725256027331667488206265171692288645898374
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 66]]
A248291
Egyptian fraction representation of sqrt(67) (A010519) using a greedy function.
Original entry on oeis.org
8, 6, 54, 5968, 37928283, 14186508539132240, 215574431124169048574472920051105, 619113864242566215185357331731644567622871533734575552668037746157, 1026704635586993757466869990798845550899476775104786232072062922961543188349830119350020024351935013557637621452049626418228548257237
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 67]]
A248292
Egyptian fraction representation of sqrt(68) (A010520) using a greedy function.
Original entry on oeis.org
8, 5, 22, 1322, 3621500, 17445297363138, 776156771532279826926457191, 1125673063406602593902433484734481317497130098734266573, 2359563766366828684685276326098059577152401128042629265861141526556488039378108148960279616218064655420661149
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 68]]