A248293
Egyptian fraction representation of sqrt(69) (A010521) using a greedy function.
Original entry on oeis.org
8, 4, 18, 937, 933269, 1035335826584, 1922586201513701668252744, 28276178347455966021225105018046994195665521584589, 833556138210674401337075496134582593689166273775276908669899884379507156146934822563063380503158977
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 69]]
A248294
Egyptian fraction representation of sqrt(70) (A010522) using a greedy function.
Original entry on oeis.org
8, 3, 31, 992, 1245369, 3302336350417, 47523810173595463077699706, 15227181289661678179456803859437449044352739723867580, 290150350103448613285887398334236111049315440797539935407545942151460489216853681370927408862165807652692
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 70]]
A248295
Egyptian fraction representation of sqrt(71) (A010523) using a greedy function.
Original entry on oeis.org
8, 3, 11, 525, 386544, 639498711870, 1018235602235689213572994, 6335607869766803762689695208858285361004070429148, 42457213694266417320054923496312615766199040305766336893524891089914272708684998227290613582884885
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 71]]
A248296
Egyptian fraction representation of sqrt(72) (A010524) using a greedy function.
Original entry on oeis.org
8, 3, 7, 111, 12212, 421899134, 214366287730447196, 74154301233407587376512952938963737, 22082353211860579770417392785370193807657413641357962334630621172698141
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 72]]
A248297
Egyptian fraction representation of sqrt(73) (A010525) using a greedy function.
Original entry on oeis.org
8, 2, 23, 1904, 3644794, 253138275595730, 299921681006149892361129426137, 319157637936684764321170119844052189479588993114762538993037, 104022456806315370788933277888878173955194511356798258776365960524644747879084195850803592853844837028709668458856157018
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 73]]
A248298
Egyptian fraction representation of sqrt(74) (A010526) using a greedy function.
Original entry on oeis.org
8, 2, 10, 431, 196796, 42222589233, 4119127882822681368069, 22394712126990929163352329336575823966927304, 810283246500627303789590552867279442902569752132975902553147296681478084954900646327035
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 74]]
A248299
Egyptian fraction representation of sqrt(75) (A010527) using a greedy function.
Original entry on oeis.org
8, 2, 7, 58, 6431, 53009387, 13524645787537549, 1142628380301529129095399568249405, 1570973545691471437706583067806558638094352380787686966365249029961, 30132697563946080563252698610167018391060692836650929258987357511120069113850317439674328461143709736843885017809313776112531985178378
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 75]]
A248300
Egyptian fraction representation of sqrt(76) (A010528) using a greedy function.
Original entry on oeis.org
8, 2, 5, 57, 3937, 37141276, 4653057274142158, 47471949655200856696698957090199, 11484366883753641302577416484692763851090325557224592536410101596, 1021543423762203659811429437059378653018184069838777743837274072099337791716358457056702326068913163280349514932095292745066307994
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 76]]
A248301
Egyptian fraction representation of sqrt(77) (A010529) using a greedy function.
Original entry on oeis.org
8, 2, 4, 41, 1742, 11028177, 162993884286434, 98590211385064017280363413293, 12117436325243830366668048782511200599594547426236327606671, 1005207586152279178371805242956335367687650840213497606799698333833564307176435895593356718339151523032260919541519453
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 77]]
A248302
Egyptian fraction representation of sqrt(78) (A010530) using a greedy function.
Original entry on oeis.org
8, 2, 4, 13, 207, 145528, 2014567277837, 18506674542689699353989922, 29204169131207852528143087130566230597483060288517588, 1413186736193694972997145387255081607494646716902772853300760690304360053815944509194409970991405502998192
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 78]]