cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A234648 Even sums of 2 consecutive odious numbers (A000069).

Original entry on oeis.org

6, 24, 30, 40, 54, 72, 86, 96, 102, 120, 126, 136, 150, 160, 166, 184, 198, 216, 222, 232, 246, 264, 278, 288, 294, 312, 326, 344, 350, 360, 374, 384, 390, 408, 414, 424, 438, 456, 470, 480, 486, 504, 510, 520, 534, 544, 550, 568, 582, 600, 606, 616, 630
Offset: 1

Views

Author

Gerasimov Sergey, Dec 29 2013

Keywords

Comments

All the terms in this sequence are evil numbers (A001969).

Crossrefs

Intersection of A005843 and A234011.

Programs

  • Mathematica
    odQ[n_] := OddQ @ DigitCount[n, 2, 1]; Select[Plus @@@ Partition[Select[ Range[320], odQ], 2, 1], EvenQ] (* Amiram Eldar, Aug 31 2020 *)

Formula

a(n) = A234011(A036554(n)) = A225822(n) + (-1)^n.

A386987 For n >= 2, a(n) is the least r >= 1 such that T(n - r) + ... + T(n - 1) = T(n + 1) + ... + T(n + r) where T(i) is A010060(i).

Original entry on oeis.org

2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3
Offset: 2

Views

Author

Ctibor O. Zizka, Aug 12 2025

Keywords

Comments

a(n) is from {1, 2, 3, 4}.

Examples

			For n = 6: T(6 - r) + ... + T(5) = T(7) + ... + T(6 + r) is true for the least r = 4  because A010060(2) + A010060(3) + A010060(4) + A010060(5) = A010060(7) + A010060(8) + A010060(9) + A010060(10), thus a(6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = 0, r = 1}, While[r <= n && (r == 1 || s != 0), s += (ThueMorse[n - r] - ThueMorse[n + r]); r++]; r-1]; Array[a, 100, 2] (* Amiram Eldar, Aug 12 2025 *)

Formula

a(A081706(n) + 1) = 1.
a(2*A079523(n)) = 2.
a(A249034(n))= 2.
a(A225822(n)) = 3.
a(A056196(n)) = 3.
a(2*A131323(n)) = 4.
a(2*A249034(n) - 1) = 4.
Previous Showing 21-22 of 22 results.