A248253
Egyptian fraction representation of sqrt(26) (A010481) using a greedy function.
Original entry on oeis.org
5, 11, 124, 21784, 767400293, 1762025132544871871, 3756028786746097256770667892973677974, 42736560346010944990137576929510502074095427615068285034007804816583306199
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 26]]
A248254
Egyptian fraction representation of sqrt(27) (A010482) using a greedy function.
Original entry on oeis.org
5, 6, 34, 13516, 202119099, 64783216365098195, 22100984125756663557825370106132649, 666714143657173655990633057343413567220367208291412102910376204532308
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 27]]
A248259
Egyptian fraction representation of sqrt(32) (A010487) using a greedy function.
Original entry on oeis.org
5, 2, 7, 72, 9241, 229909903, 85086814482844985, 23179346469573782778010843389086345, 543347867420258195663107222041076121949552033670222863973158866609327, 741522735509298769232902024568403103695824837660291384400704443062457446366917782889948614422252425565925024142554380383285632350884136295
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 32]]
A248263
Egyptian fraction representation of sqrt(37) (A010491) using a greedy function.
Original entry on oeis.org
6, 13, 172, 39216, 11016972197, 134283233503741443791, 18872603108304707287590736836379382332539, 773806129529571836706640292961775806691343199188996534429569375589794450652266246
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 37]]
A248267
Egyptian fraction representation of sqrt(41) (A010495) using a greedy function.
Original entry on oeis.org
6, 3, 15, 321, 111450, 533909816159, 325998701518914099105001, 1006914879088411198399682064005635831534437484321, 1497711655729721286088828059704410216184274677681054392262396421340070136379357931802690267613686
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 41]]
A248271
Egyptian fraction representation of sqrt(45) (A010499) using a greedy function.
Original entry on oeis.org
6, 2, 5, 122, 138674, 32476589259, 7827697016386517458238, 674742854143668103289252692160450020023615629, 480580099090725670530151893237450499682750267119621001128141465878491826900413350973083878
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 45]]
A248272
Egyptian fraction representation of sqrt(46) (A010500) using a greedy function.
Original entry on oeis.org
6, 2, 4, 31, 13905, 492036837, 305826422756315436, 925021938815488805990118508463313646, 9816702673371796111477307067848281658737547920701725975736611619650989298
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 46]]
A248275
Egyptian fraction representation of sqrt(50) (A010503) using a greedy function.
Original entry on oeis.org
7, 15, 228, 65875, 47908261511, 2667718882316939409472, 10322125191786944152031025720794295875480056, 2674110852900041212107591350675026110499276180787546409661407265673151668416641308455602
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 50]]
A248285
Egyptian fraction representation of sqrt(60) (A010513) using a greedy function.
Original entry on oeis.org
7, 2, 5, 22, 1953, 8757320, 200363231947338, 251498638872293007053426171621, 66042587251601360877390227281939923689168739166891158256860, 4700611214316865673372383919277278315652700484280159329574134292008149533706899635266740297016908819979207833123794661
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 60]]
A248289
Egyptian fraction representation of sqrt(65) (A010517) using a greedy function.
Original entry on oeis.org
8, 17, 292, 104588, 38180791782, 3220186027640389204438, 514699020130621511259820819971940751063386467, 352263737947121519527774929870101098823418099762680744113382295431246430941544915986778001
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 65]]