A248248
Egyptian fraction representation of sqrt(20) (A010476) using a greedy function.
Original entry on oeis.org
4, 3, 8, 73, 9617, 111131795, 26084503201670555, 4157115685705509978962832510685264, 147322611763368949503218439363472434087529649552239912252006589221170, 71615688159358613181735412731094718668653530665367791449989367208307390123881747858538896669229709245658779872053034609094278277577821587
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 20]]
A248251
Egyptian fraction representation of sqrt(23) (A010479) using a greedy function.
Original entry on oeis.org
4, 2, 4, 22, 2653, 21700059, 708858809575725, 1165753299339083780718554998198, 2548635100713650540210812530804809217002270820405582029350843, 9424721747010820452946739585309019492765231528601856929750632998033892638026047178801699999141027371964867528932823084053
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[
iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 23]]
A248252
Egyptian fraction representation of sqrt(24) (A010480) using a greedy function.
Original entry on oeis.org
4, 2, 3, 16, 318, 667493, 520599832812, 1406502882894868771562029, 5482100301108869539661068478608291549480253128390, 195012261486920753888173091467257385308263858947121366558714224718185929485569758493733677353323155
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 24]]
A248255
Egyptian fraction representation of sqrt(28) (A010483) using a greedy function.
Original entry on oeis.org
5, 4, 25, 666, 892358, 830113252100, 6890868531517036908804204, 765564099160305273559925342798919694764879717405690, 681027718799553552099401892363533829797246440808729714034620705787624761700369516608168143683921127348
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 28]]
A248256
Egyptian fraction representation of sqrt(29) (A010484) using a greedy function.
Original entry on oeis.org
5, 3, 20, 547, 301184, 147558270953, 86497522148984105061516, 8551929116782420428265616715584087619312418621, 99749931990938468116836650873165146389082138700427586581720209715910550531363814159816345424
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 29]]
A248257
Egyptian fraction representation of sqrt(30) (A010485) using a greedy function.
Original entry on oeis.org
5, 3, 7, 967, 1028069, 2298068118217, 5494201416226460930421913, 8921656602209859921713003519980673897631224869075674, 838074105556913621236663949120105672159883231833809533473972526431411898035963444027095791284399338983624
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 30]]
A248258
Egyptian fraction representation of sqrt(31) (A010486) using a greedy function.
Original entry on oeis.org
5, 2, 15, 911, 756131657, 1046059081493109619, 1823555845900657755132295578770597587, 5295210870312939233563525303202129576974975306672437715711158044936692625
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[
iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 31]]
A248260
Egyptian fraction representation of sqrt(33) (A010488) using a greedy function.
Original entry on oeis.org
5, 2, 5, 23, 923, 1039448, 1349594009502, 1841990944227649463764190, 5531888379621714420992617902281239594988386275117, 172423874327527416450254906621893256497583527925050132860644029730203113536215473159687066655835408
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 33]]
A248261
Egyptian fraction representation of sqrt(34) (A010489) using a greedy function.
Original entry on oeis.org
5, 2, 4, 13, 249, 78409, 36737419013, 3360517821921008389676, 12410117686109445240372967020019944131780632, 3346975977981026206584708326983128003661219924365061759193139960235987881485856695085453
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 34]]
A248262
Egyptian fraction representation of sqrt(35) (A010490) using a greedy function.
Original entry on oeis.org
5, 2, 3, 13, 172, 106165, 18285649425, 2186743227575352844102, 34485253453894276212351220254887863775700566, 1196120890861075329034546890130985440938005448458845105688952404014155813652248242764257
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 35]]