A191433 Dispersion of ([n*x+n+1/2]), where x=(golden ratio) and [ ]=floor, by antidiagonals.
1, 3, 2, 8, 5, 4, 21, 13, 10, 6, 55, 34, 26, 16, 7, 144, 89, 68, 42, 18, 9, 377, 233, 178, 110, 47, 24, 11, 987, 610, 466, 288, 123, 63, 29, 12, 2584, 1597, 1220, 754, 322, 165, 76, 31, 14, 6765, 4181, 3194, 1974, 843, 432, 199, 81, 37, 15, 17711, 10946
Offset: 1
Examples
Northwest corner: 1....3....8....21...55...144 2....5....13...34...89...233 4....10...26...68...178..466 6....16...42...110..288..754 7....18...47...123..322..843
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) x = 1 + GoldenRatio; f[n_] := Floor[n*x + 1/2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191433 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191433 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments