cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A133967 Home primes whose homeliness is greater than 6.

Original entry on oeis.org

3761, 13367, 23251, 23761, 31397, 33797, 36389, 37643, 37951, 37967, 77711, 77773, 113779, 131777, 132749, 132953, 134129, 178069, 229751, 233347, 233617, 233743, 233881, 233911, 237547, 293863, 311677, 311821, 312619, 313613, 313619, 313739
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 1, 12, 144, 1273, ....

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 7 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 35]

A133968 Home primes whose homeliness is 7.

Original entry on oeis.org

23251, 23761, 33797, 36389, 37643, 37951, 37967, 77711, 113779, 131777, 132749, 134129, 233347, 233617, 233881, 237547, 293863, 311677, 311821, 313619, 314627, 317743, 319547, 331319, 331907, 333139, 333271, 333457, 333791, 333911, 337517
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 8, 80, 667, ... .

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 7 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 35]

A133969 Home primes whose homeliness is greater than 7.

Original entry on oeis.org

3761, 13367, 31397, 77773, 132953, 178069, 229751, 233743, 233911, 312619, 313613, 313739, 313829, 317741, 317903, 333857, 333923, 337397, 337457, 337487, 337661, 337853, 337907, 352489, 357727, 359929, 364627, 370451, 373753, 374159
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 1, 4, 64, 606, ....

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 8 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 31]

A133970 Home primes whose homeliness is 8.

Original entry on oeis.org

3761, 13367, 31397, 132953, 233743, 233911, 313829, 333857, 333923, 337397, 337487, 337661, 337907, 357727, 370451, 373753, 374159, 375407, 375979, 379433, 379859, 383557, 397673, 397751, 397829, 399241, 409823, 473659, 616789, 733331
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 1, 3, 33, 318, ... .

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 8 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 35]

A133971 Home primes whose homeliness is greater than 8.

Original entry on oeis.org

77773, 178069, 229751, 312619, 313613, 313739, 317741, 317903, 337457, 337853, 352489, 359929, 364627, 374531, 374587, 375743, 375997, 378997, 379103, 379187, 379397, 379811, 379997, 389971, 719239, 733391, 742283, 747521, 749711, 771941
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 1, 31, 288, ....

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 9 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 30]

A133972 Home primes whose homeliness is 9.

Original entry on oeis.org

178069, 229751, 313613, 313739, 317741, 317903, 337457, 337853, 352489, 374587, 375743, 375997, 379103, 379187, 379397, 379997, 389971, 719239, 733391, 742283, 1128901, 1143113, 1148593, 1392143, 1911319, 2231051, 2331997, 2333329
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 0, 20, 146, ... .

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 9 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 35]

A133973 Home primes whose homeliness is greater than 9.

Original entry on oeis.org

77773, 312619, 359929, 364627, 374531, 378997, 379811, 747521, 749711, 771941, 777643, 1173463, 1355021, 1389281, 1929311, 1991153, 2314723, 2315641, 2333797, 2336263, 2337397, 2337547, 2337607, 2337691, 2339929, 2373823, 2389853
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 1, 11, 142, ....

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 10 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 30]

A133974 Home primes whose homeliness is 10.

Original entry on oeis.org

77773, 312619, 359929, 364627, 374531, 749711, 771941, 1355021, 1389281, 1929311, 1991153, 2336263, 2337547, 2339929, 2373823, 2389853, 2397127, 3137993, 3139547, 3139733, 3139907, 3235471, 3312539, 3313631, 3316661
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 1, 7, 82, ... .

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 10 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 35]

A133975 Home primes whose homeliness is greater than 10.

Original entry on oeis.org

378997, 379811, 747521, 777643, 1173463, 2314723, 2315641, 2333797, 2337397, 2337607, 2337691, 3127979, 3127997, 3136607, 3173761, 3182561, 3371237, 3372371, 3373547, 3373907, 3374729, 3376991, 3377999, 3378317, 3379829
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 0, 4, 60, ....

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 11 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 30]

A133976 Home primes whose homeliness is 11.

Original entry on oeis.org

379811, 1173463, 2314723, 2315641, 2337607, 3182561, 3371237, 3372371, 3376991, 3379997, 3383777, 3411901, 3539857, 3710627, 3779873, 3791453, 3792179, 3795581, 3798737, 3831523, 3898513, 7338269, 7482569, 7539743
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 0, 0, 1, 24, ... .

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 11 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 31]
Previous Showing 11-20 of 24 results. Next