cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A370818 Number of sets of nonempty subsets of {1..n} with only one possible way to choose a set of different vertices of each edge.

Original entry on oeis.org

1, 2, 6, 45, 1352, 157647, 63380093, 85147722812, 385321270991130
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2024

Keywords

Examples

			The set-system {{2},{1,2},{2,4},{1,3,4}} has unique choice (2,1,4,3) so is counted under a(4).
		

Crossrefs

This is the unique version of A367902, complement A367903.
Choosing a sequence gives A367904, ranks A367908.
The maximal case is A368601, complement A368600.
This is the restriction of A370638 to A000225.
Factorizations of this type are counted by A370645.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Union[Sort/@Select[Tuples[#],UnsameQ@@#&]]]==1&]],{n,0,3}]

Formula

a(n) = A370638(2^n - 1).
Binomial transform of A368601. - Christian Sievers, Aug 12 2024

Extensions

a(5)-a(8) from Christian Sievers, Aug 12 2024

A138237 Number of unlabeled graphs with at least one cycle in which every connected component has at most one cycle.

Original entry on oeis.org

1, 3, 9, 26, 71, 197, 543, 1507, 4186, 11722, 32883, 92724, 262179, 743792, 2115019, 6028779, 17217093, 49258009, 141142096, 404997704, 1163569094, 3346830818, 9636723582, 27774427243, 80121104084, 231317022483, 668346261557
Offset: 3

Views

Author

Washington Bomfim, May 17 2008

Keywords

Examples

			a(9)=543 since we have several cases, with one unicyclic graph, or two, or three. Namely,
-One triangle and a forest of order 6, or 20 graphs.
-One unicyclic graph with 4 nodes and a forest of order 5, or 20 graphs.
-One unicyclic graph with 5 nodes and a forest of order 4, or 30 graphs.
-One unicyclic graph with 6 nodes and a forest of order 3, or 39 graphs.
-One unicyclic graph of 7 nodes and a forest of order 2, or 66 graphs.
-One unicyclic graph of 8 nodes and an isolated vertex, or 89 graphs.
-One unicyclic graph of 9 nodes, or 240 graphs.
-Two triangles and a forest of order 3, or 3 graphs.
-One triangle plus one unicyclic graph of 4 nodes plus a forest of order 2, or 4 graphs.
-One triangle plus one unicyclic graph of 5 nodes plus an isolated vertex, or 5 graphs.
-One triangle plus one unicyclic graph of 6 nodes, or 13 graphs.
-Two unicyclic graphs of 4 nodes and an isolated vertex, or C(2+2-1,2)=3 graphs.
-One unicyclic graph of 5 nodes and another of 4 nodes, or 10 graphs.
-Three triangles, or 1 graph.
Total = 543.
		

Crossrefs

Formula

a(n) = A134964(n) - A005195(n).
Previous Showing 31-32 of 32 results.