cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A151704 a(0)=1, a(1)=0; a(2^i+j) = 2*a(j) + a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

1, 0, 2, 2, 2, 2, 6, 6, 2, 2, 6, 6, 6, 10, 18, 14, 2, 2, 6, 6, 6, 10, 18, 14, 6, 10, 18, 18, 22, 38, 50, 30, 2, 2, 6, 6, 6, 10, 18, 14, 6, 10, 18, 18, 22, 38, 50, 30, 6, 10, 18, 18, 22, 38, 50, 34, 22, 38, 54, 58, 82, 126, 130, 62, 2, 2, 6, 6, 6, 10, 18, 14, 6, 10, 18, 18, 22, 38, 50, 30, 6
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

Programs

  • Maple
    See A151702 for Maple code.
  • Mathematica
    a = {1, 0}; Do[AppendTo[a, 2 a[[j]] + a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)

A151705 a(0)=0, a(1)=1; a(2^i+j) = 2*a(j) + 2*a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

0, 1, 2, 6, 2, 6, 16, 16, 2, 6, 16, 16, 16, 44, 64, 36, 2, 6, 16, 16, 16, 44, 64, 36, 16, 44, 64, 64, 120, 216, 200, 76, 2, 6, 16, 16, 16, 44, 64, 36, 16, 44, 64, 64, 120, 216, 200, 76, 16, 44, 64, 64, 120, 216, 200, 104, 120, 216, 256, 368, 672, 832, 552, 156, 2, 6, 16, 16, 16
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

Programs

  • Maple
    See A151702 for Maple code.
  • Mathematica
    a = {0, 1}; Do[AppendTo[a, 2 a[[j]] + 2 a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)

A151706 a(0)=1, a(1)=0; a(2^i+j) = 2*a(j) + 2*a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

1, 0, 2, 4, 2, 4, 12, 12, 2, 4, 12, 12, 12, 32, 48, 28, 2, 4, 12, 12, 12, 32, 48, 28, 12, 32, 48, 48, 88, 160, 152, 60, 2, 4, 12, 12, 12, 32, 48, 28, 12, 32, 48, 48, 88, 160, 152, 60, 12, 32, 48, 48, 88, 160, 152, 80, 88, 160, 192, 272, 496, 624, 424, 124, 2, 4, 12, 12, 12, 32, 48
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

Programs

  • Maple
    See A151702 for Maple code.
  • Mathematica
    a = {1, 0}; Do[AppendTo[a, 2 a[[j]] + 2 a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)

A151707 a(0)=1, a(1)=1; a(2^i+j) = 2*a(j) + 2*a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

1, 1, 4, 10, 4, 10, 28, 28, 4, 10, 28, 28, 28, 76, 112, 64, 4, 10, 28, 28, 28, 76, 112, 64, 28, 76, 112, 112, 208, 376, 352, 136, 4, 10, 28, 28, 28, 76, 112, 64, 28, 76, 112, 112, 208, 376, 352, 136, 28, 76, 112, 112, 208, 376, 352, 184, 208, 376, 448, 640, 1168, 1456, 976, 280
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Comments

Equals A151705 + A151706.

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

Programs

  • Maple
    See A151702 for Maple code.
  • Mathematica
    a = {1, 1}; Do[AppendTo[a, 2 a[[j]] + 2 a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)

A151708 a(0)=1, a(1)=2; a(2^i+j)=2*a(j)+2*a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

1, 2, 6, 16, 6, 16, 44, 44, 6, 16, 44, 44, 44, 120, 176, 100, 6, 16, 44, 44, 44, 120, 176, 100, 44, 120, 176, 176, 328, 592, 552, 212, 6, 16, 44, 44, 44, 120, 176, 100, 44, 120, 176, 176, 328, 592, 552, 212, 44, 120, 176, 176, 328, 592, 552, 288, 328, 592, 704, 1008, 1840, 2288
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Comments

Equals 2*A151705+A151706.

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

Programs

  • Maple
    See A151702 for Maple code.
  • Mathematica
    a = {1, 2}; Do[AppendTo[a, 2 a[[j]] + 2 a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)

A151691 G.f.: Product_{k>=1} (1 + 2*x^(2^k-1) + x^(2^k)).

Original entry on oeis.org

1, 2, 1, 2, 5, 4, 1, 2, 5, 4, 5, 12, 13, 6, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 5, 12, 13, 14, 29, 38, 25, 16, 29, 38, 41, 72, 105, 88, 41, 10, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 5, 12, 13, 14, 29
Offset: 0

Views

Author

N. J. A. Sloane, Jun 04 2009

Keywords

Examples

			From _Omar E. Pol_, Jun 09 2009: (Start)
Triangle begins:
  1;
  2,1;
  2,5,4,1;
  2,5,4,5,12,13,6,1;
  2,5,4,5,12,13,6,5,12,13,14,29,38,25,8,1;
  2,5,4,5,12,13,6,5,12,13,14,29,38,25,8,5,12,13,14,29,38,25,16,29,38,41,72,...
(End)
		

Crossrefs

For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A151685. See A151703 for another version with a simpler recurrence.
Cf. A000079. - Omar E. Pol, Jun 09 2009
Previous Showing 11-16 of 16 results.