cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A258316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 or 0011.

Original entry on oeis.org

5, 7, 7, 10, 9, 10, 15, 12, 12, 15, 23, 17, 15, 17, 23, 36, 25, 20, 20, 25, 36, 57, 38, 28, 25, 28, 38, 57, 91, 59, 41, 33, 33, 41, 59, 91, 146, 93, 62, 46, 41, 46, 62, 93, 146, 235, 148, 96, 67, 54, 54, 67, 96, 148, 235, 379, 237, 151, 101, 75, 67, 75, 101, 151, 237, 379, 612
Offset: 1

Views

Author

R. H. Hardin, Jun 29 2015

Keywords

Comments

Table starts
...5...7..10..15..23..36..57..91.146.235.379.612..989.1599.2586.4183.6767.10948
...7...9..12..17..25..38..59..93.148.237.381.614..991.1601.2588.4185.6769.10950
..10..12..15..20..28..41..62..96.151.240.384.617..994.1604.2591.4188.6772.10953
..15..17..20..25..33..46..67.101.156.245.389.622..999.1609.2596.4193.6777.10958
..23..25..28..33..41..54..75.109.164.253.397.630.1007.1617.2604.4201.6785.10966
..36..38..41..46..54..67..88.122.177.266.410.643.1020.1630.2617.4214.6798.10979
..57..59..62..67..75..88.109.143.198.287.431.664.1041.1651.2638.4235.6819.11000
..91..93..96.101.109.122.143.177.232.321.465.698.1075.1685.2672.4269.6853.11034
.146.148.151.156.164.177.198.232.287.376.520.753.1130.1740.2727.4324.6908.11089
.235.237.240.245.253.266.287.321.376.465.609.842.1219.1829.2816.4413.6997.11178
Apparently: put 1s in some number of nonadjacent columns or put 1s in some number of nonadjacent rows

Examples

			Some solutions for n=4 k=4
..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....1..1..1..1..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0
..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
		

Crossrefs

Column 1 is A018910
Column 2 is A157727(n+3)
Column 3 is A187107(n+3)
Diagonal is A001595(n+2)
Superdiagonal 1 is A000071(n+5)
Superdiagonal 2 is A001610(n+3)
Superdiagonal 3 is A001595(n+4)
Superdiagonal 5 is A022308(n+5)
Superdiagonal 6 is A022319(n+5)
Superdiagonal 7 is A022407(n+5)
Superdiagonal 9 is A022323(n+7)

Formula

Empirical: T(n,k) = Fibonacci(n+3) +Fibonacci(k+3) -1
Empirical for rows, columns and nw-se diagonals: a(n) = 2*a(n-1) -a(n-3)

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).
Previous Showing 11-12 of 12 results.