cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A274281 Numbers that are a product of distinct Lucas numbers (2,1,3,4,7,11,...)

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 18, 21, 22, 24, 28, 29, 33, 36, 42, 44, 47, 54, 56, 58, 66, 72, 76, 77, 84, 87, 88, 94, 108, 116, 123, 126, 132, 141, 144, 152, 154, 168, 174, 188, 198, 199, 203, 216, 228, 231, 232, 246, 252, 264, 282, 304, 308, 319, 322
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			The Lucas numbers are 2,1,3,4,7,11,18,29,..., so that the sequence of all products of distinct Lucas numbers, in increasing order, are 1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 18, 21, 22, 24, 28, 29,...
		

Crossrefs

Programs

  • Mathematica
    f[1] = 2; f[2] = 1; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s

A274191 Numbers that are a product of distinct numbers in A022086.

Original entry on oeis.org

3, 6, 9, 15, 18, 24, 27, 39, 45, 54, 63, 72, 90, 102, 117, 135, 144, 162, 165, 189, 216, 234, 267, 270, 306, 351, 360, 378, 405, 432, 495, 567, 585, 612, 648, 699, 702, 801, 810, 918, 936, 945, 990, 1053, 1080, 1131, 1134, 1296, 1485, 1512, 1530, 1602, 1701
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			17 = 3*6; 405 = 3*9*15.
		

Crossrefs

Programs

  • Mathematica
    f[1] = 3; f[2] = 6; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s1 = Rest[s]

A274286 Numbers that are a product of distinct numbers in row 2 of the Wythoff array, A035513.

Original entry on oeis.org

4, 7, 11, 18, 28, 29, 44, 47, 72, 76, 77, 116, 123, 126, 188, 198, 199, 203, 304, 308, 319, 322, 329, 492, 504, 517, 521, 522, 532, 792, 796, 812, 836, 843, 846, 861, 1276, 1288, 1316, 1353, 1363, 1364, 1368, 1386, 1393, 2068, 2084, 2088, 2128, 2189, 2204
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			28 = 4*7, 308 = 4*7*11.
		

Crossrefs

Programs

  • Mathematica
    f[1] = 4; f[2] = 7; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s1 = Rest[s]

A274287 Numbers that are a product of distinct numbers in row 3 of the Wythoff array, A035513.

Original entry on oeis.org

6, 10, 16, 26, 42, 60, 68, 96, 110, 156, 160, 178, 252, 260, 288, 408, 416, 420, 466, 660, 672, 680, 754, 960, 1068, 1088, 1092, 1100, 1220, 1560, 1728, 1760, 1768, 1780, 1974, 2496, 2520, 2796, 2848, 2856, 2860, 2880, 3194, 4032, 4080, 4160, 4524, 4608
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			60 = 6*10, 960 = 6*10*16.
		

Crossrefs

Cf. A160009.

Programs

  • Mathematica
    f[1] = 6; f[2] = 10; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; Rest[s]

A274283 Numbers that are a product of distinct numbers in A022095.

Original entry on oeis.org

1, 5, 6, 11, 17, 28, 30, 45, 55, 66, 73, 85, 102, 118, 140, 168, 187, 191, 225, 270, 308, 309, 330, 365, 438, 476, 495, 500, 510, 590, 708, 765, 803, 809, 840, 935, 955, 1122, 1146, 1241, 1260, 1298, 1309, 1350, 1540, 1545, 1848, 1854, 2006, 2044, 2101, 2118
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			30 = 5*6, 330 = 5*6*11.
		

Crossrefs

Cf. A160009.

Programs

  • Mathematica
    f[1] = 1; f[2] = 5; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s

A274284 Numbers that are a product of distinct numbers in A006355.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 16, 20, 24, 26, 32, 40, 42, 48, 52, 60, 64, 68, 80, 84, 96, 104, 110, 120, 128, 136, 156, 160, 168, 178, 192, 208, 220, 240, 252, 260, 272, 288, 312, 320, 336, 356, 384, 408, 416, 420, 440, 466, 480, 504, 520, 544, 576, 624, 640, 660, 672
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			8 = 2*4, 480 = 2*4*6*10.
		

Crossrefs

Cf. A160009.

Programs

  • Mathematica
    f[1] = 2; f[2] = 4; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {2}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s

A274285 Numbers that are a product of distinct numbers in A013655.

Original entry on oeis.org

2, 5, 7, 10, 12, 14, 19, 24, 31, 35, 38, 50, 60, 62, 70, 81, 84, 95, 100, 120, 131, 133, 155, 162, 168, 190, 212, 217, 228, 250, 262, 266, 310, 343, 350, 372, 405, 420, 424, 434, 456, 500, 555, 567, 589, 600, 655, 665, 686, 700, 744, 810, 840, 898, 917, 950
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			10 = 2*5, 120 = 2*5*12.
		

Crossrefs

Cf. A160009.

Programs

  • Mathematica
    f[1] = 2; f[2] = 5; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s1 = Rest[s]

A274353 Number of factors L(i) > 1 of A274280(n), where L = A000032 (Lucas numbers, 1,3,4,...)

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			The products of distinct Lucas numbers, arranged in increasing order, comprise A274280.  The list begins with 1, 3, 4, 7, 11, 12 = 3*4, so that a(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 3; r[n_] := r[n] = r[n - 1] + r[n - 2];
    s = {1}; z = 40; f = Map[r, Range[z]]; Take[f, 10]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    infQ[n_] := MemberQ[f, n];
    a = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
    Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
    ans = Join[{{1}}, a]; Take[ans, 8]
    w = Map[Length, ans] (* A274353 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274347 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274348 *)
    (* Peter J. C. Moses, Jun 17 2016 *)

A274452 Products of distinct Narayana's cow numbers (A000930).

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 13, 18, 19, 24, 26, 27, 28, 36, 38, 39, 41, 48, 52, 54, 56, 57, 60, 72, 76, 78, 82, 84, 88, 104, 108, 112, 114, 117, 120, 123, 129, 144, 152, 156, 162, 164, 168, 171, 176, 180, 189, 216, 224, 228, 234, 240, 246, 247, 252, 258, 264, 277
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2016

Keywords

Examples

			The Narayana's cow numbers numbers are 1, 2, 3, 4, 6, 9, 13, 19, 28, ..., so that the sequence of all products of distinct members, in increasing order, is (2, 3, 4, 6, 8, 9, 12, 13, 18, 19, 24, ...).
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 3]
    s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20] (*A000930*)
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z] (* A274452 *)

A274282 Numbers that are a product of distinct numbers in A000285.

Original entry on oeis.org

1, 4, 5, 9, 14, 20, 23, 36, 37, 45, 56, 60, 70, 92, 97, 115, 126, 148, 157, 180, 185, 207, 240, 254, 280, 300, 322, 333, 388, 411, 460, 485, 504, 518, 540, 628, 630, 665, 740, 785, 828, 840, 851, 873, 1016, 1035, 1076, 1200, 1270, 1288, 1332, 1358, 1380
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			20 = 4*5, 180 = 4*5*9.
		

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[2] = 4; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s
Previous Showing 11-20 of 26 results. Next