cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A178725 Irregular triangle read by rows: row n gives coefficients in expansion of Product_{k=1..n} (1 + x^(4*k - 1)) for n >= 0.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 0, 0, 2, 2, 0, 0, 3, 2, 0, 1, 3, 1, 0, 1, 3, 1, 0, 2, 3, 0, 0, 2, 2, 0, 0, 3, 1, 0, 1, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

For n >= 1, row n is the Poincaré polynomial for the Lie group B_n (or, equally, Sp(2n) or O(2n+1)).
Row sums are powers of 2.

Examples

			Triangle begins:
[1] (the empty product)
[1, 0, 0, 1]
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1]
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1]
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1]
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1]
...
		

References

  • Borel, A. and Chevalley, C., The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 1955, no. 14, pp 1-9.
  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Rows: A170956-A170965. Cf. A142724.
Previous Showing 11-11 of 11 results.