cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-21 of 21 results.

A336307 Numbers that are neither Colombian nor Brazilian.

Original entry on oeis.org

2, 4, 6, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 59, 61, 67, 71, 79, 83, 89, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 239, 251, 257, 263, 269, 271, 281, 283, 289, 293, 311, 313, 317, 331
Offset: 1

Views

Author

Bernard Schott, Jul 17 2020

Keywords

Comments

The only even terms are 2, 4 and 6 because 2 = 1 + (sum of digits of 1), 4 = 2 + (sum of digits of 2), 6 = 3 + (sum of digits of 3) so these integers are not Colombian then also, because an even number is Brazilian iff it is >= 8.
A333858, A336143, A336144 and this sequence form a partition of the set of positive integers N* ( A000027).

Examples

			For b = 17, there is no repdigit in some base b < 16 equal to 17, hence 17 is not Brazilian and 17 = 13 + (sum of digits of 13) hence 17 is not Colombian, so 17 is a term.
		

Crossrefs

Intersection of A220570 (not Brazilian) and A176995 (not Colombian).
Cf. A003052 (Colombian), A125134 (Brazilian), A333858 (Brazilian and Colombian), A336143 (Brazilian not Colombian), A336144 (Colombian not Brazilian).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[ Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 300; Select[Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}], # <= n && !brazQ[#] &] (* Amiram Eldar, Jul 17 2020 *)
Previous Showing 21-21 of 21 results.