cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A186674 Total number of n-digit numbers requiring 14 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 6, 60, 632, 6135, 60132, 600115, 6000118, 60000129, 600000127, 6000000136
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + a(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Formula

a(n) = A186673(n) - A186673(n-1).

Extensions

a(5)-a(11) from Giovanni Resta, Apr 29 2016

A186676 Total number of n-digit numbers requiring 15 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 6, 60, 624, 6071, 60073, 600069, 6000069, 60000069, 600000061, 6000000071
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + a(n) + A186678(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Formula

a(n) = A186675(n) - A186675(n-1).

Extensions

a(5)-a(11) from Giovanni Resta, Apr 29 2016

A186678 Total number of n-digit numbers requiring 16 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 4, 43, 241, 299, 287, 304, 309, 316, 286, 299
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + a(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Formula

a(n) = A186677(n) - A186677(n-1).

Extensions

a(5)-a(11) from Giovanni Resta, Apr 29 2016

A186650 Total number of n-digit numbers requiring 2 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

1, 4, 9, 29, 100, 317, 1007, 3146, 10016, 31712, 100204, 316799, 1002314, 3169309, 10022310, 31693094
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + a(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Programs

  • Maple
    isbiquadrate:=proc(n) type(root(n,4),posint); end:
    isA003336:=proc(n) local x,y4; if isbiquadrate(n) then false; else for x from 1 do y4:=n-x^4; if y4A003336(k) then i:=i+1; fi; od: return(i); end: for n from 1 do print(a(n)); od;

Formula

a(n) = A186649(n)-A186649(n-1).

Extensions

a(6) from Martin Renner, Feb 26 2011
a(7)-a(16) from Giovanni Resta, Apr 29 2016

A186652 Total number of n-digit numbers requiring 3 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

1, 5, 23, 112, 648, 3564, 19820, 110506, 622268, 3501263, 19699896
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + A186650(n) + a(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Formula

a(n) = A186651(n) - A186651(n-1).

Extensions

a(5)-a(11) from Giovanni Resta, Apr 29 2016

A186681 Total number of n-digit numbers requiring 17 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 3, 30, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + a(n) + A186683(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 6. - Nathaniel Johnston, May 09 2011

Crossrefs

Formula

a(n) = A186680(n) - A186680(n-1).

A186683 Total number of n-digit numbers requiring 18 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 2, 17, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + a(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 5. - Nathaniel Johnston, May 09 2011

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 2, 17, 5}, 100] (* Paolo Xausa, Jul 30 2024 *)

Formula

a(n) = A186682(n) - A186682(n-1).

A274844 The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The inverse multinomial transform [IML] transforms an input sequence b(n) into the output sequence a(n). The IML transform inverses the effect of the multinomial transform [MNL], see A274760, and is related to the logarithmic transform, see A274805 and the first formula.
To preserve the identity MNL[IML[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the inverse multinomial transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the inverse multinomial transform of a sequence. The first program is derived from a formula given by Alois P. Heinz for the logarithmic transform, see the first formula and A001187. The second program uses the e.g.f. for multivariate row polynomials, see A127671 and the examples. The third program uses information about the inverse of the inverse of the multinomial transform, see A274760.
The IML transform of A001818(n) = ((2*n-1)!!)^2 leads quite unexpectedly to A005411(n), a sequence related to certain Feynman diagrams.
Some IML transform pairs, n >= 1: A000110(n) and 1/A000142(n-1); A137341(n) and A205543(n); A001044(n) and A003319(n+1); A005442(n) and A000204(n); A005443(n) and A001350(n); A007559(n) and A000244(n-1); A186685(n+1) and A131040(n-1); A061711(n) and A141151(n); A000246(n) and A000035(n); A001861(n) and A141044(n-1)/A001710(n-1); A002866(n) and A000225(n); A000262(n) and A000027(n).

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
		

References

  • Richard P. Feynman, QED, The strange theory of light and matter, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
  • Mathematica
    nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = c(n)/(n-1)! with c(n) = b(n) - Sum_{k=1..n-1}(k*binomial(n, k)*b(n-k)*c(k)), n >= 1 and a(0) = undefined, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = A000079(n-1) * A005411(n), n >= 1.
Previous Showing 11-18 of 18 results.