cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A188335 Number of nondecreasing arrangements of 5 nonzero numbers in -(n+3)..(n+3) with sum zero.

Original entry on oeis.org

40, 86, 166, 288, 472, 726, 1076, 1534, 2130, 2878, 3814, 4954, 6340, 7990, 9950, 12242, 14918, 18000, 21546, 25582, 30170, 35338, 41154, 47648, 54894, 62924, 71816, 81606, 92378, 104168, 117066, 131112, 146400, 162972, 180928, 200312, 221230
Offset: 1

Views

Author

R. H. Hardin Mar 28 2011

Keywords

Comments

Row 5 of A188333

Examples

			Some solutions for n=6
.-4...-7...-4...-7...-5...-9...-6...-7...-5...-7...-9...-5...-9...-5...-8...-6
.-3...-3...-3...-4...-5...-7...-6...-4...-4...-4...-5...-4...-3...-3...-3...-6
..1...-1...-3....2....1....1....2....2...-1....3....3....2....2....1...-2...-1
..3....4....4....3....2....6....2....4....4....4....3....3....5....1....5....4
..3....7....6....6....7....9....8....5....6....4....8....4....5....6....8....9
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11).
Empirical: g.f. -2*x*(20 +3*x -3*x^2 -2*x^3 -9*x^4 +14*x^5 +2*x^6 +7*x^7 -4*x^8 -12*x^9 +7*x^10) / ( (x^2+1) *(1+x+x^2) *(1+x)^2 *(x-1)^5 ). a(n) = 23*n^4/288 +175*n^3/144 +985*n^2/144 +1601*n/96 +25265/1728 -(-1)^n*(3*n/32+27/64) -2*A061347(n+1)/27 -A057077(n+1)/8. - R. J. Mathar, Mar 28 2011

A188336 Number of nondecreasing arrangements of 6 nonzero numbers in -(n+4)..(n+4) with sum zero.

Original entry on oeis.org

197, 424, 828, 1488, 2519, 4050, 6252, 9314, 13479, 19008, 26224, 35472, 47169, 61756, 79754, 101712, 128267, 160088, 197940, 242622, 295041, 356138, 426970, 508634, 602351, 709384, 831128, 969024, 1124655, 1299652, 1495796, 1714918
Offset: 1

Views

Author

R. H. Hardin Mar 28 2011

Keywords

Comments

Row 6 of A188333

Examples

			Some solutions for n=6
-10..-10...-3...-9...-7...-9...-9...-6...-7...-5...-7...-4...-6...-5...-9...-9
.-4...-6...-2...-3...-6...-1...-9...-6...-5...-4...-3...-3...-2...-5...-8...-7
..1...-1...-2...-1...-2...-1...-4....1...-5...-4...-1...-1...-2...-2...-2....2
..2....5....1...-1....1...-1....4....1....4....2....2....2....3...-2....4....3
..4....5....3....4....4....6....9....4....5....4....4....3....3....6....5....4
..7....7....3...10...10....6....9....6....8....7....5....3....4....8...10....7
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+2*a(n-8)-a(n-11)-a(n-13)+2*a(n-15)-a(n-16).
Empirical: G.f. -x*(-197 -30*x +20*x^2 -29*x^3 +33*x^4 -37*x^5 -64*x^6 -157*x^7 +5*x^8 +27*x^9 +84*x^10 +24*x^11 +67*x^12 -46*x^13 -130*x^14 +78*x^15) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x)^2 *(x-1)^6 ). - R. J. Mathar, Mar 28 2011

A188337 Number of nondecreasing arrangements of 7 nonzero numbers in -(n+5)..(n+5) with sum zero.

Original entry on oeis.org

980, 2128, 4238, 7836, 13694, 22786, 36454, 56314, 84496, 123512, 176534, 247236, 340148, 460412, 614240, 808614, 1051792, 1352972, 1722892, 2173378, 2718084, 3371956, 4152034, 5076868, 6167438, 7446422, 8939282, 10673432, 12679398
Offset: 1

Views

Author

R. H. Hardin Mar 28 2011

Keywords

Comments

Row 7 of A188333

Examples

			Some solutions for n=6
.-9..-11..-11..-10...-8..-11...-9..-10..-10..-10..-11..-10..-10...-6..-11...-7
.-3...-4...-9..-10...-8...-6...-9...-9..-10...-5...-5...-5...-5...-5..-10...-7
.-3...-4...-4...-8...-1...-3...-8...-4...-3...-5...-5...-1...-5...-4...-7...-7
.-3...-1....2....3....1....1....3....2....3....2...-1....2....2...-1....4....2
..4....3....6....7....1....5....6....5....3....4....7....3....4....4....6....4
..4....7....7....9....6....6....6....8....7....7....7....5....5....5....9....6
.10...10....9....9....9....8...11....8...10....7....8....6....9....7....9....9
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-2*a(n-7)+2*a(n-8)+a(n-9)-a(n-13)-2*a(n-14)+2*a(n-15)-a(n-16)+a(n-17)+a(n-19)-2*a(n-21)+a(n-22).
Empirical: G.f. -2*x*(490 +84*x -9*x^2 +170*x^3 +75*x^4 +308*x^5 -67*x^6 +585*x^7 +274*x^8 +36*x^9 -8*x^10 -95*x^11 -302*x^12 -273*x^13 +345*x^14 -126*x^15 +216*x^16 +63*x^17 +165*x^18 -120*x^19 -327*x^20 +198*x^21) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^7 ). - R. J. Mathar, Mar 28 2011

A188338 Number of nondecreasing arrangements of 8 nonzero numbers in -(n+6)..(n+6) with sum zero.

Original entry on oeis.org

5142, 11200, 22563, 42593, 76251, 130453, 214784, 341988, 528926, 797248, 1174631, 1695625, 2403243, 3350003, 4599874, 6229576, 8330912, 11012320, 14401669, 18648073, 23925159, 30433213, 38402946, 48097954, 59819074, 73907174, 90748085
Offset: 1

Views

Author

R. H. Hardin Mar 28 2011

Keywords

Comments

Row 8 of A188333

Examples

			Some solutions for n=6
-12..-12..-12...-6..-11...-9..-11..-11..-11..-11..-12...-9..-12..-12..-11..-12
.-9...-9..-10...-6...-7...-8...-4...-9..-10...-8...-8...-7...-7..-10..-10...-9
.-6...-6...-7...-5...-3...-8...-1...-8...-6...-2...-6...-5...-5...-8...-9...-9
.-4...-4...-4...-3....1...-2...-1...-3...-1...-2....3....2...-2...-6...-7...-7
..1...-4....3...-2....4....5....2....1....4...-2....3....2....5....5....6....6
..7...11....6....4....4....5....2....7....4....4....6....3....6...10....9....7
.11...12...12....9....6....6....6...11....8...10....7....7....6...10...11...12
.12...12...12....9....6...11....7...12...12...11....7....7....9...11...11...12
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-a(n-7)+a(n-9)+a(n-10)+a(n-12)-2*a(n-13)-2*a(n-16)+a(n-17)+a(n-19)+a(n-20)-a(n-22)+a(n-23)-a(n-24)-a(n-26)+2*a(n-28)-a(n-29).
Empirical: G.f. -x*(-5142 -916*x -2609*x^3 -2265*x^4 -5656*x^5 -2529*x^6 -5176*x^7 -6633*x^8 -5259*x^9 -2576*x^10 +3400*x^12 -110*x^13 +1064*x^14 +3324*x^15 -2452*x^16 -1012*x^17 -2864*x^18 -1943*x^19 +601*x^20 +1598*x^21 -1297*x^22 +2352*x^23 +675*x^24 +1715*x^25 -1323*x^26 -3484*x^27 +2132*x^28 -2108*x^11 -163*x^2) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^8 ). - R. J. Mathar, Mar 28 2011
Previous Showing 11-14 of 14 results.