cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A189069 Number of 7Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

128, 16384, 537496, 11733712, 333124565, 11711612310, 394122762759, 12333648780753, 384370907976719, 12223176207053499, 390844606475937638, 12440485660190874953, 395016975079313283143, 12552364987398546054654
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Row 7 of A189064

Examples

			Some solutions for 7X3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..1....1..0..0....0..0..1
..0..0..0....0..0..1....1..1..1....1..0..0....1..0..1....1..0..1....0..0..0
..1..1..1....0..1..1....1..0..0....1..1..0....0..0..0....1..1..1....0..0..1
..1..1..0....1..1..1....0..0..0....1..0..0....1..1..1....0..1..1....1..0..1
..0..0..0....1..0..0....0..1..1....1..1..1....1..1..1....1..0..0....1..0..0
..1..1..1....1..0..1....1..1..1....1..0..1....0..0..0....1..1..1....1..0..0
		

A189070 Number of 8Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

256, 65536, 3450100, 112065936, 4978704008, 287687887135, 15741481568133, 784513337393283, 38847888577030583, 1976954458226489324, 101442818681363216652, 5172132737293384995985, 262697289178376867663383
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Row 8 of A189064

Examples

			Some solutions for 8X3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..1....0..1..1....0..0..1....0..1..1....1..0..0....0..0..1
..0..0..0....1..1..1....1..1..0....1..1..0....1..1..1....1..0..0....0..0..0
..0..0..1....1..1..1....0..0..0....1..0..0....1..0..1....0..1..1....1..1..0
..1..0..0....0..0..0....1..1..1....0..0..1....1..0..0....1..0..1....1..0..0
..1..0..0....1..0..1....1..1..1....0..0..1....1..0..0....1..1..1....1..1..0
..1..1..1....1..0..1....1..0..1....1..0..0....1..0..0....1..1..0....1..0..0
		
Previous Showing 11-12 of 12 results.