cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A189330 Number of nondecreasing arrangements of 7 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 12, 22, 49, 54, 110, 91, 179, 154, 238, 190, 360, 215, 376, 333, 453, 290, 604, 334, 607, 478, 634, 411, 904, 428, 771, 658, 882, 504, 1132, 537, 1023, 832, 1023, 627, 1453, 625, 1158, 1007, 1336, 710, 1614, 753, 1459, 1191, 1398, 825, 2016, 831, 1574, 1337
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Row 5 of A189326

Examples

			Some solutions for n=3
..2....0....1....1....1....3....0....1....1....0....0....1....1....1....1....1
..3....3....1....1....1....3....1....1....1....1....1....2....1....2....2....1
..3....3....2....1....1....3....1....1....1....1....1....2....1....3....2....2
..3....3....2....1....2....3....2....2....2....2....1....3....1....3....2....2
..3....3....2....1....2....3....2....3....2....3....2....3....2....3....3....3
..3....3....3....2....2....3....2....3....3....3....3....3....3....3....3....3
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

Formula

Empirical: a(n) = -4*a(n-1) -13*a(n-2) -33*a(n-3) -76*a(n-4) -156*a(n-5) -300*a(n-6) -538*a(n-7) -919*a(n-8) -1494*a(n-9) -2337*a(n-10) -3518*a(n-11) -5129*a(n-12) -7245*a(n-13) -9954*a(n-14) -13307*a(n-15) -17352*a(n-16) -22075*a(n-17) -27440*a(n-18) -33327*a(n-19) -39579*a(n-20) -45945*a(n-21) -52136*a(n-22) -57780*a(n-23) -62486*a(n-24) -65817*a(n-25) -67357*a(n-26) -66703*a(n-27) -63526*a(n-28) -57579*a(n-29) -48739*a(n-30) -37025*a(n-31) -22608*a(n-32) -5832*a(n-33) +12817*a(n-34) +32691*a(n-35) +53055*a(n-36) +73066*a(n-37) +91885*a(n-38) +108650*a(n-39) +122610*a(n-40) +133081*a(n-41) +139585*a(n-42) +141780*a(n-43) +139585*a(n-44) +133081*a(n-45) +122610*a(n-46) +108650*a(n-47) +91885*a(n-48) +73066*a(n-49) +53055*a(n-50) +32691*a(n-51) +12817*a(n-52) -5832*a(n-53) -22608*a(n-54) -37025*a(n-55) -48739*a(n-56) -57579*a(n-57) -63526*a(n-58) -66703*a(n-59) -67357*a(n-60) -65817*a(n-61) -62486*a(n-62) -57780*a(n-63) -52136*a(n-64) -45945*a(n-65) -39579*a(n-66) -33327*a(n-67) -27440*a(n-68) -22075*a(n-69) -17352*a(n-70) -13307*a(n-71) -9954*a(n-72) -7245*a(n-73) -5129*a(n-74) -3518*a(n-75) -2337*a(n-76) -1494*a(n-77) -919*a(n-78) -538*a(n-79) -300*a(n-80) -156*a(n-81) -76*a(n-82) -33*a(n-83) -13*a(n-84) -4*a(n-85) -a(n-86)

A189331 Number of nondecreasing arrangements of 8 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 14, 28, 70, 84, 179, 157, 321, 283, 461, 390, 720, 482, 784, 747, 988, 684, 1299, 796, 1371, 1121, 1395, 973, 2066, 1061, 1707, 1531, 2058, 1207, 2624, 1282, 2386, 1968, 2303, 1599, 3439, 1482, 2615, 2372, 3304, 1705, 3744, 1798, 3430, 2993, 3157, 1975
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Row 6 of A189326

Examples

			Some solutions for n=3
..0....0....1....1....0....1....1....1....2....1....0....1....3....0....0....1
..1....3....1....1....1....3....1....1....3....1....1....1....3....1....1....1
..1....3....1....1....1....3....1....2....3....1....1....1....3....1....1....1
..1....3....1....2....2....3....2....3....3....1....2....1....3....1....1....1
..2....3....2....2....3....3....3....3....3....1....2....1....3....1....1....1
..3....3....3....2....3....3....3....3....3....1....2....2....3....2....1....2
..3....3....3....3....3....3....3....3....3....2....3....3....3....3....2....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

A189332 Number of nondecreasing arrangements of 9 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 16, 34, 94, 119, 275, 253, 548, 477, 845, 725, 1375, 951, 1608, 1522, 2126, 1511, 2758, 1809, 3130, 2557, 3125, 2312, 4710, 2551, 3930, 3502, 4942, 2922, 6053, 3105, 5798, 4483, 5381, 4049, 8173, 3634, 6207, 5339, 8368, 4204, 8795, 4353, 8395, 7148
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Row 7 of A189326

Examples

			Some solutions for n=3
..0....0....1....0....1....1....1....0....1....1....0....1....1....0....1....1
..1....1....1....1....1....1....1....1....1....1....3....1....3....1....1....1
..1....1....1....1....1....1....1....1....1....2....3....1....3....1....1....2
..1....1....1....2....1....2....1....1....1....2....3....1....3....1....2....3
..1....1....2....2....1....2....1....1....1....2....3....1....3....2....3....3
..1....1....2....2....2....2....2....2....2....3....3....1....3....2....3....3
..2....1....3....3....2....3....2....3....3....3....3....2....3....2....3....3
..2....2....3....3....2....3....3....3....3....3....3....2....3....3....3....3
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

A189333 Number of nondecreasing arrangements of 10 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 18, 40, 120, 157, 393, 374, 866, 775, 1426, 1261, 2448, 1761, 3006, 2890, 4232, 3063, 5605, 3802, 6615, 5533, 6899, 5188, 10472, 5864, 8986, 7964, 11411, 7088, 13830, 7645, 13841, 10360, 12801, 9755, 19139, 9300, 15031, 12334, 20347, 10558, 20918
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Row 8 of A189326

Examples

			Some solutions for n=3
..0....0....1....1....1....1....1....0....1....0....0....0....1....1....0....1
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....3....3
..1....1....1....1....1....1....2....1....2....1....1....1....1....1....3....3
..2....1....1....1....2....2....3....1....2....2....1....1....1....1....3....3
..2....1....1....1....3....2....3....1....3....3....1....1....1....1....3....3
..3....2....1....1....3....2....3....1....3....3....1....1....2....1....3....3
..3....2....1....1....3....3....3....2....3....3....1....1....3....2....3....3
..3....3....2....1....3....3....3....2....3....3....1....2....3....2....3....3
..3....3....3....2....3....3....3....2....3....3....2....3....3....2....3....3
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		
Previous Showing 11-14 of 14 results.