cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A189700 Number of 7Xn binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

54, 2916, 77752, 1999150, 55423132, 1553640701, 43645304766, 1226051976034, 34463827972461, 968925997882076, 27242280161913994, 765954539776147015, 21536381951216338725, 605544975017743747314, 17026369106775648529847
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Row 7 of A189696

Examples

			Some solutions for 7X3
..0..1..0....1..0..0....0..0..0....1..1..1....1..0..0....1..0..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..0....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....0..1..0....0..1..1....0..1..1....1..1..1....1..1..1
..0..1..0....1..1..1....1..1..1....0..1..0....0..0..1....0..0..0....1..1..1
..1..1..1....1..0..1....1..1..1....0..0..1....0..0..0....1..1..1....0..0..0
..1..0..0....0..0..1....0..1..0....0..1..0....0..0..0....1..0..1....0..1..1
..1..0..1....1..0..0....1..0..1....0..1..0....0..0..0....1..0..1....0..0..0
		

A189701 Number of 8Xn binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

88, 7744, 295720, 10867960, 437257670, 17872674996, 733660344149, 30140493826752, 1239562062347534, 50994136275721816, 2098158626051989039, 86335489832805005659, 3552764734604163177272, 146202547786505491839949
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Row 8 of A189696

Examples

			Some solutions for 8X3
..0..1..1....0..0..1....0..1..1....0..1..1....0..0..0....0..1..0....0..0..0
..1..1..0....1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..1..1
..0..1..1....1..0..0....1..1..1....0..1..0....0..0..1....0..0..1....0..1..0
..1..1..0....0..1..1....1..1..0....1..0..1....1..1..1....1..1..0....1..1..1
..1..1..1....1..1..0....1..1..1....0..1..0....1..0..1....1..1..1....0..1..1
..1..0..1....1..1..1....0..0..1....1..1..1....1..0..1....1..1..1....1..1..1
..1..1..0....1..0..1....1..1..0....1..1..1....1..0..0....1..0..0....1..1..0
..1..0..1....0..1..0....1..1..0....1..0..0....1..0..1....0..1..1....0..1..0
		
Previous Showing 11-12 of 12 results.