cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A190074 Number of arrangements of 5 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

12, 144, 922, 3481, 9904, 23400, 48491, 92478, 162599, 270267, 430274, 655974, 965098, 1390174, 1947527, 2667906, 3590889, 4753865, 6198717, 7979654, 10128692, 12732119, 15867500, 19571053, 23904927, 29021539, 34967650, 41839570, 49768153
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 4 of A190071

Examples

			Some solutions for n=4
.-1....1....4....4....1...-3....1...-2...-2....4...-1....1....4...-4....3...-2
..2....4...-4....2...-1...-3...-4...-3....4...-3....1....2...-2....3....1...-1
..1...-4....3...-1....3...-4....4....2....3...-3....3...-3....3...-2....2....2
..4...-3....1....3....4....2...-4....2...-2....4....3...-3....2...-4...-1...-1
.-3....3...-4....3....2...-3...-3...-3...-2....4...-4....3....1...-2....3...-1
		

A190075 Number of arrangements of 6 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

0, 550, 5136, 25306, 88509, 249119, 599181, 1291797, 2542771, 4665542, 8142317, 13502963, 21463807, 33185295, 49745019, 72458535, 103375585, 144707600, 199040665, 269251217, 358360590, 471257436, 613624162, 789275327, 1002980959
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 5 of A190071

Examples

			Some solutions for n=4
..4....2....3....2....2...-2...-3...-2....4....2...-3....3...-4...-2....1....1
.-2...-1...-4...-2....3...-4....3....3....4....2...-4....2....4....1...-3...-2
.-3....4....2....4....2....3....1...-1....3...-2....4....2....2...-1....2...-4
..4....3....2...-4....3...-2....2...-1....2....1...-2....3....2....2....1...-4
..4...-4...-3....4...-4...-2...-2...-2...-1...-4...-2....4...-4....4...-1....2
..4...-3...-3....1....4...-3....2...-1....3...-2...-2...-2....2....1...-2....3
		

A190076 Number of arrangements of 7 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

40, 1896, 28656, 191456, 834717, 2783714, 7737762, 18951546, 41786130, 84902980, 162378720, 292892946, 503182507, 835582280, 1339061119, 2077237619, 3144963614, 4653920446, 6746522401, 9597835033, 13398597773, 18439060711
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 6 of A190071

Examples

			Some solutions for n=4
..2...-3...-4....4...-1...-4....4...-1...-4...-3....2...-3....4...-3...-2....4
.-1....1....1...-2...-3...-4...-2...-3...-2...-1...-3...-1...-4...-2...-1...-2
.-4....2....3...-3....2...-2...-3....2...-2...-4....4....4...-3....3...-4....3
..4....1....3....4....1....1....4....3....4...-4....1...-2....2....3....1...-4
..4...-2...-4...-4...-1...-2....3...-4...-1....1...-1...-2....1....3....1...-2
.-4...-1...-2...-3....3....1...-2....4...-2...-2....2....3....4...-3...-1...-1
.-2....1...-3...-4....3....1...-1....2...-3....4...-2....4...-4....2...-4....3
		

A190077 Number of arrangements of 8 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

0, 7584, 162028, 1436962, 7843113, 31391655, 101530262, 282859251, 698197690, 1570715217, 3291688243, 6460935664, 12000071771, 21412481203, 36702670681, 60642753250, 97406905547, 152416471950, 232926480058, 348492673798
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 7 of A190071

Examples

			Some solutions for n=4
.-4...-3...-4...-2...-3...-2...-1...-4...-4...-1...-4...-2...-4...-4...-3...-2
.-3...-4...-4...-4...-4...-4...-4...-4...-3...-4...-4...-4...-3...-4...-4...-4
.-1...-4....4....3....3....3...-1....2....1....3....4....4...-3...-4...-2...-2
..1....2...-4...-2...-2...-3....1...-2...-2....3....2....4....1....1....3....1
..4...-4....2...-3...-1...-2....3....4...-2....3...-1....4....2...-3....3...-2
.-2...-2....3....1...-1....2...-1...-3....2....2...-1...-3...-3...-1...-1....3
..1....3....1....4...-4...-4...-4...-3...-2...-2...-3....3....4....3...-1....2
..2...-3...-2....1....3...-4....3...-1...-1....2....2....4....4....4....1...-2
		

A190078 Number of arrangements of 9 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

140, 27328, 910716, 10802667, 73725405, 353856100, 1333341624, 4232955454, 11720735320, 29213945353, 67119317038, 143366487211, 287901954546, 552087286271, 1012169804786, 1781377206624, 3036183971866, 5024176668242
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 8 of A190071

Examples

			Some solutions for n=4
.-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4
.-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4
..1....1....1...-1...-4...-3...-3...-1...-4...-3...-3...-3....1....1...-1...-4
..2....1....1...-4...-2...-4....1....2...-4....1....2....2...-2...-2....3...-4
..4....3....1....4...-1...-3....4...-1...-2...-3...-1....3...-1....2....2....3
..2....2....3...-2....2....1....2....3....1....2....3....3...-1....3....4...-4
..1....3...-4....1....4....3...-1....2....4....3...-4...-3...-1....1...-3....3
.-4....3...-2....3...-1...-2...-2...-2....4....3...-4...-4...-3...-3....2....2
..4...-4....4...-2....2....1....4....3...-1....2...-4....2....2...-3...-1...-4
		
Previous Showing 11-15 of 15 results.