A190074
Number of arrangements of 5 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
Original entry on oeis.org
12, 144, 922, 3481, 9904, 23400, 48491, 92478, 162599, 270267, 430274, 655974, 965098, 1390174, 1947527, 2667906, 3590889, 4753865, 6198717, 7979654, 10128692, 12732119, 15867500, 19571053, 23904927, 29021539, 34967650, 41839570, 49768153
Offset: 1
Some solutions for n=4
.-1....1....4....4....1...-3....1...-2...-2....4...-1....1....4...-4....3...-2
..2....4...-4....2...-1...-3...-4...-3....4...-3....1....2...-2....3....1...-1
..1...-4....3...-1....3...-4....4....2....3...-3....3...-3....3...-2....2....2
..4...-3....1....3....4....2...-4....2...-2....4....3...-3....2...-4...-1...-1
.-3....3...-4....3....2...-3...-3...-3...-2....4...-4....3....1...-2....3...-1
A190075
Number of arrangements of 6 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
Original entry on oeis.org
0, 550, 5136, 25306, 88509, 249119, 599181, 1291797, 2542771, 4665542, 8142317, 13502963, 21463807, 33185295, 49745019, 72458535, 103375585, 144707600, 199040665, 269251217, 358360590, 471257436, 613624162, 789275327, 1002980959
Offset: 1
Some solutions for n=4
..4....2....3....2....2...-2...-3...-2....4....2...-3....3...-4...-2....1....1
.-2...-1...-4...-2....3...-4....3....3....4....2...-4....2....4....1...-3...-2
.-3....4....2....4....2....3....1...-1....3...-2....4....2....2...-1....2...-4
..4....3....2...-4....3...-2....2...-1....2....1...-2....3....2....2....1...-4
..4...-4...-3....4...-4...-2...-2...-2...-1...-4...-2....4...-4....4...-1....2
..4...-3...-3....1....4...-3....2...-1....3...-2...-2...-2....2....1...-2....3
A190076
Number of arrangements of 7 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
Original entry on oeis.org
40, 1896, 28656, 191456, 834717, 2783714, 7737762, 18951546, 41786130, 84902980, 162378720, 292892946, 503182507, 835582280, 1339061119, 2077237619, 3144963614, 4653920446, 6746522401, 9597835033, 13398597773, 18439060711
Offset: 1
Some solutions for n=4
..2...-3...-4....4...-1...-4....4...-1...-4...-3....2...-3....4...-3...-2....4
.-1....1....1...-2...-3...-4...-2...-3...-2...-1...-3...-1...-4...-2...-1...-2
.-4....2....3...-3....2...-2...-3....2...-2...-4....4....4...-3....3...-4....3
..4....1....3....4....1....1....4....3....4...-4....1...-2....2....3....1...-4
..4...-2...-4...-4...-1...-2....3...-4...-1....1...-1...-2....1....3....1...-2
.-4...-1...-2...-3....3....1...-2....4...-2...-2....2....3....4...-3...-1...-1
.-2....1...-3...-4....3....1...-1....2...-3....4...-2....4...-4....2...-4....3
A190077
Number of arrangements of 8 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
Original entry on oeis.org
0, 7584, 162028, 1436962, 7843113, 31391655, 101530262, 282859251, 698197690, 1570715217, 3291688243, 6460935664, 12000071771, 21412481203, 36702670681, 60642753250, 97406905547, 152416471950, 232926480058, 348492673798
Offset: 1
Some solutions for n=4
.-4...-3...-4...-2...-3...-2...-1...-4...-4...-1...-4...-2...-4...-4...-3...-2
.-3...-4...-4...-4...-4...-4...-4...-4...-3...-4...-4...-4...-3...-4...-4...-4
.-1...-4....4....3....3....3...-1....2....1....3....4....4...-3...-4...-2...-2
..1....2...-4...-2...-2...-3....1...-2...-2....3....2....4....1....1....3....1
..4...-4....2...-3...-1...-2....3....4...-2....3...-1....4....2...-3....3...-2
.-2...-2....3....1...-1....2...-1...-3....2....2...-1...-3...-3...-1...-1....3
..1....3....1....4...-4...-4...-4...-3...-2...-2...-3....3....4....3...-1....2
..2...-3...-2....1....3...-4....3...-1...-1....2....2....4....4....4....1...-2
A190078
Number of arrangements of 9 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
Original entry on oeis.org
140, 27328, 910716, 10802667, 73725405, 353856100, 1333341624, 4232955454, 11720735320, 29213945353, 67119317038, 143366487211, 287901954546, 552087286271, 1012169804786, 1781377206624, 3036183971866, 5024176668242
Offset: 1
Some solutions for n=4
.-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4
.-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4...-4
..1....1....1...-1...-4...-3...-3...-1...-4...-3...-3...-3....1....1...-1...-4
..2....1....1...-4...-2...-4....1....2...-4....1....2....2...-2...-2....3...-4
..4....3....1....4...-1...-3....4...-1...-2...-3...-1....3...-1....2....2....3
..2....2....3...-2....2....1....2....3....1....2....3....3...-1....3....4...-4
..1....3...-4....1....4....3...-1....2....4....3...-4...-3...-1....1...-3....3
.-4....3...-2....3...-1...-2...-2...-2....4....3...-4...-4...-3...-3....2....2
..4...-4....4...-2....2....1....4....3...-1....2...-4....2....2...-3...-1...-4
Comments