A191431 Dispersion of ([n*x+x]), where x=sqrt(2) and [ ]=floor, by antidiagonals.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 13, 16, 18, 21, 22, 19, 17, 24, 26, 31, 32, 28, 25, 20, 35, 38, 45, 46, 41, 36, 29, 23, 50, 55, 65, 66, 59, 52, 42, 33, 27, 72, 79, 93, 94, 84, 74, 60, 48, 39, 30, 103, 113, 132, 134, 120, 106, 86, 69, 56, 43, 34, 147, 161, 188, 190, 171, 151, 123, 98, 80, 62, 49, 37
Offset: 1
Examples
Northwest corner: 1.....2....4....7...11...16 3.....5....8...12...18...26 6.....9...14...21...31...45 10...15...22...32...46...66 13...19...28...41...59...84
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) x = Sqrt[2]; f[n_] := Floor[n*x + x] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[ Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191431 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191431 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments