cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A193047 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 2, 19, 102, 377, 1104, 2777, 6282, 13155, 25998, 49153, 89792, 159681, 278034, 476131, 804790, 1346457, 2234768, 3686201, 6051290, 9897491, 16143262, 26275009, 42698112, 69304897, 112393634, 182155507, 295080582, 477850745
Offset: 0

Views

Author

Clark Kimberling, Jul 15 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+n^4, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.

Crossrefs

Programs

Formula

a(n)=6*a(n-1)-14*a(n-2)+15*a(n-3)-5*a(n-4)-4*a(n-5)+4*a(n-6)-a(n-7).
G.f.: -x*(-1+4*x-21*x^2-x^3-6*x^4+x^5) / ( (x^2+x-1)*(x-1)^5 ). - R. J. Mathar, May 12 2014

A193049 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 1, 2, 4, 12, 37, 105, 268, 625, 1355, 2772, 5414, 10188, 18605, 33161, 57954, 99683, 169265, 284452, 474066, 784852, 1292567, 2119923, 3465620, 5651323, 9197673, 14947276, 24263704, 39353486, 63787101, 103341963, 167366400, 270986619
Offset: 0

Views

Author

Clark Kimberling, Jul 15 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+n(4-5*n^2+n^4)/120, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.

Crossrefs

Programs

Formula

a(n)=7*a(n-1)-20*a(n-2)+29*a(n-3)-20*a(n-4)+*a(n-5)+8*a(n-6)-5*a(n-7)+a(n-8).
G.f.: -x*(x^2-x+1)*(x^4-5*x^3+9*x^2-5*x+1) / ( (x^2+x-1)*(x-1)^6 ). - R. J. Mathar, May 12 2014

A193041 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 3, 13, 44, 122, 292, 631, 1267, 2411, 4408, 7820, 13560, 23109, 38867, 64721, 106964, 175782, 287660, 469275, 763795, 1241071, 2014128, 3265848, 5292144, 8571817, 13879587, 22468981, 36368252, 58859186, 95251828, 154138015
Offset: 0

Views

Author

Clark Kimberling, Jul 15 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+1+n^3, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.

Crossrefs

Programs

Formula

a(n) = 5*a(n-1)-9*a(n-2)+6*a(n-3)+a(n-4)-3*a(n-5)+a(n-6).
G.f.: -x*(7*x^2-2*x+1)/((x-1)^4*(x^2+x-1)). [Colin Barker, Nov 12 2012]
Previous Showing 41-43 of 43 results.