cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A194838 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=sqrt(3).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 1, 12, 8, 4, 11, 7, 3, 10, 6, 2, 13, 9, 5, 1, 12, 8, 4, 11, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 03 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
2 1
3 2 1
3 2 1 4
3 2 5 1 4
3 6 2 5 1 4
7 3 6 2 5 1 4
7 3 6 2 5 1 8 4
7 3 6 2 9 5 1 8 4
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[3];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]  (* A194838 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194839 *)
    q[n_] := Position[p, n]; Flatten[
    Table[q[n], {n, 1, 80}]]  (* A194840 *)

A194839 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194838; an interspersion.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 9, 8, 7, 10, 14, 12, 11, 15, 13, 20, 18, 16, 21, 19, 17, 27, 25, 23, 28, 26, 24, 22, 34, 32, 30, 36, 33, 31, 29, 35, 43, 40, 38, 45, 42, 39, 37, 44, 41, 53, 50, 47, 55, 52, 49, 46, 54, 51, 48, 64, 61, 58, 66, 63, 60, 57, 65, 62, 59, 56, 75, 72, 69
Offset: 1

Views

Author

Clark Kimberling, Sep 03 2011

Keywords

Comments

See A194832 and A194838.

Examples

			Northwest corner:
1...3...6...9...14..20..27
2...5...8...12..18..25..32
4...7...11..16..23..30..38
10..15..21..28..36..45..55
13..19..26..33..42..52..63
17..24..31..39..49..60..71
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[3];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]  (* A194838 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
     {k, 1, n}]]  (* A194839 *)
    q[n_] := Position[p, n]; Flatten[
     Table[q[n], {n, 1, 80}]]  (* A194840 *)

A194844 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=sqrt(5).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 6, 2, 3, 4, 5, 1, 6, 2, 7, 3, 4, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1, 10, 6, 2, 7, 3, 8, 4, 9, 5, 1, 10, 6, 2, 11, 7, 3, 8, 4, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
1 2
1 2 3
1 2 3 4
5 1 2 3 4
5 1 6 2 3 4
5 1 6 2 7 3 4
5 1 6 2 7 3 8 4
9 5 1 6 2 7 3 8 4
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[5];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]  (* A194844 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
     {k, 1, n}]]    (* A194845 *)
    q[n_] := Position[p, n]; Flatten[
     Table[q[n], {n, 1, 80}]]   (* A194846 *)

A194845 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194844; an interspersion.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 11, 17, 19, 20, 21, 16, 18, 23, 25, 27, 28, 22, 24, 26, 30, 32, 34, 36, 29, 31, 33, 35, 39, 41, 43, 45, 38, 40, 42, 44, 37, 48, 51, 53, 55, 47, 50, 52, 54, 46, 49, 58, 61, 64, 66, 57, 60, 63, 65, 56, 59, 62, 69, 72, 75
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 and A194844.

Examples

			Northwest corner:
1...2...4...7...12..17
3...5...8...13..19..25
6...9...14..20..27..34
10..15..21..28..36..45
11..16..22..29..38..47
18..24..31..40..50..60
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[5];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]  (* A194844 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
     {k, 1, n}]]    (* A194845 *)
    q[n_] := Position[p, n]; Flatten[
     Table[q[n], {n, 1, 80}]]   (* A194846 *)

A194856 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(5).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 6, 1, 5, 4, 3, 7, 2, 6, 1, 5, 4, 8, 3, 7, 2, 6, 1, 5, 4, 8, 3, 7, 2, 6, 1, 5, 9, 4, 8, 3, 7, 2, 6, 10, 1, 5, 9, 4, 8, 3, 7, 11, 2, 6, 10, 1, 5, 9, 4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9, 4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9, 13, 4, 8, 12
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
2 1
3 2 1
4 3 2 1
4 3 2 1 5
4 3 2 6 1 5
4 3 7 2 6 1 5
4 8  3 7 2 6 1 5
4 8  3 7 2 6 1 5  9
		

Crossrefs

Programs

  • Mathematica
    r = -Sqrt[5];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194856 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
     {k, 1, n}]]  (* A194857 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194858 *)

A194857 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194856; an interspersion.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 10, 9, 8, 7, 14, 13, 12, 11, 15, 20, 18, 17, 16, 21, 19, 27, 25, 23, 22, 28, 26, 24, 35, 33, 31, 29, 36, 34, 32, 30, 43, 41, 39, 37, 44, 42, 40, 38, 45, 53, 50, 48, 46, 54, 51, 49, 47, 55, 52, 64, 61, 58, 56, 65, 62, 59, 57, 66, 63, 60, 76, 73, 70
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...3...6...10...14...20
2...5...9...13...18...25
4...8...12..17...23...51
7...11..16..22...29...37
15..21..38..36...44...54
		

Crossrefs

Programs

  • Mathematica
    r = -Sqrt[5];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194856 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
     {k, 1, n}]]  (* A194857 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194858 *)

A194859 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {e}, {2e}, ..., {ne}.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 12, 1, 8, 4, 11, 7, 3, 10, 6, 13, 2, 9, 5, 12, 1, 8, 4, 11, 7, 14, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
2 1
3 2 1
3 2 1 4
3 2 5 1 4
3 6 2 5 1 4
7 3 6 2 5 1 4
7 3 6 2 5 1 8 4
7 3 6 2 9 5 1 8 4
		

Crossrefs

Programs

  • Mathematica
    r = E;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194859 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194860 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194861 *)

A194860 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194859; an interspersion.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 9, 8, 7, 10, 14, 12, 11, 15, 13, 20, 18, 16, 21, 19, 17, 27, 25, 23, 28, 26, 24, 22, 34, 32, 30, 36, 33, 31, 29, 35, 43, 40, 38, 45, 42, 39, 37, 44, 41, 53, 50, 47, 55, 52, 49, 46, 54, 51, 48, 63, 60, 57, 65, 62, 59, 56, 64, 61, 58, 66, 75, 71, 68
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...3...6...9...14..20
2...5...8...12..18..25
4...7...11..16..23..30
10..15..21..28..36..45
13..19..26..33..42..52
17..24..31..39..49..59
		

Crossrefs

Programs

  • Mathematica
    r = E;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194859 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194860 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194861 *)

A194862 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=(1+sqrt(3))/2.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 5, 3, 6, 1, 4, 2, 5, 3, 6, 1, 4, 7, 2, 5, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 1, 12, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 1, 12, 4, 7, 10, 2, 13, 5, 8, 11, 3, 14
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
1 2
3 1 2
3 1 4 2
3 1 4 2 5
3 6 1 4 2 5
3 6 1 4 7 2 5
3 6 1 4 7 2 5 8
3 6 9 1 4 7 2 5 8
		

Crossrefs

Programs

  • Mathematica
    r = (1 + Sqrt[3])/2;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194862 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194863 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194867 *)

A194863 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194862; an interspersion.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 8, 10, 7, 9, 12, 14, 11, 13, 15, 18, 20, 16, 19, 21, 17, 24, 27, 22, 25, 28, 23, 26, 31, 34, 29, 32, 35, 30, 33, 36, 40, 43, 37, 41, 44, 38, 42, 45, 39, 49, 53, 46, 50, 54, 47, 51, 55, 48, 52, 60, 64, 57, 61, 65, 58, 62, 66, 59, 63, 56, 71, 76, 68
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

For a general discussion, see A194832.

Examples

			Northwest corner:
1...2...5...8...12..18
3...6...10..14..20..27
4...7...11..16..22..29
9...13..19..25..32..41
15..21..28..35..44..54
		

Crossrefs

Programs

  • Mathematica
    r = (1 + Sqrt[3])/2;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194862 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194863 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194867 *)
Previous Showing 11-20 of 49 results. Next