cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A195002 Number of lower triangles of a 6 X 6 0..n array with each element differing from all of its horizontal and vertical neighbors by one.

Original entry on oeis.org

2, 4608, 31042, 81014, 138956, 199988, 261324, 322806, 384292, 445780, 507268, 568756, 630244, 691732, 753220, 814708, 876196, 937684, 999172, 1060660, 1122148, 1183636, 1245124, 1306612, 1368100, 1429588, 1491076, 1552564, 1614052, 1675540
Offset: 1

Views

Author

R. H. Hardin, Sep 07 2011

Keywords

Comments

Row 6 of A194998.

Examples

			Some solutions for n=4:
..4............2............2............4............2............0
..3.4..........3.2..........1.0..........3.4..........3.4..........1.2
..2.3.2........4.3.2........0.1.0........2.3.4........4.3.2........2.3.4
..1.2.3.2......3.2.3.4......1.2.1.2......3.4.3.4......3.4.3.2......1.2.3.2
..0.1.2.3.2....2.3.4.3.2....0.1.0.1.2....2.3.2.3.2....2.3.2.1.2....2.1.2.1.2
..1.2.1.2.1.0..3.4.3.4.3.2..1.2.1.2.1.2..3.2.3.2.3.2..3.2.3.2.1.0..3.2.3.2.1.2
		

Crossrefs

Cf. A194998.

Formula

Empirical: a(n) = 61488*n - 169100 for n>8.
Empirical g.f.: 2*x*(1 + 2302*x + 10914*x^2 + 11769*x^3 + 3985*x^4 + 1545*x^5 + 152*x^6 + 73*x^7 + 2*x^8 + x^9) / (1 - x)^2. - Colin Barker, May 06 2018

A195003 Number of lower triangles of a 7 X 7 0..n array with each element differing from all of its horizontal and vertical neighbors by one.

Original entry on oeis.org

2, 69632, 641376, 2059822, 3816148, 5740166, 7686580, 9643120, 11600228, 13557614, 15515004, 17472396, 19429788, 21387180, 23344572, 25301964, 27259356, 29216748, 31174140, 33131532, 35088924, 37046316, 39003708, 40961100, 42918492
Offset: 1

Views

Author

R. H. Hardin, Sep 07 2011

Keywords

Comments

Row 7 of A194998.

Examples

			Some solutions for n=4:
..0..............0..............0..............0..............0
..1.0............1.0............1.0............1.0............1.0
..2.1.2..........0.1.2..........0.1.2..........2.1.2..........2.1.2
..1.2.1.2........1.0.1.2........1.2.1.2........1.2.3.4........1.0.1.2
..2.3.2.1.2......0.1.0.1.2......2.3.2.1.2......2.3.4.3.2......2.1.2.1.2
..1.2.1.2.1.2....1.0.1.0.1.2....1.2.3.2.1.0....1.2.3.2.1.0....1.2.1.0.1.2
..0.1.2.3.2.1.0..2.1.2.1.2.3.2..2.3.2.1.2.1.0..2.3.2.1.0.1.0..2.3.2.1.2.3.2
		

Crossrefs

Cf. A194998.

Formula

Empirical: a(n) = 1957392*n - 6016308 for n>10.
Empirical g.f.: 2*x*(1 + 34814*x + 251057*x^2 + 423351*x^3 + 168940*x^4 + 83846*x^5 + 11198*x^6 + 5063*x^7 + 284*x^8 + 139*x^9 + 2*x^10 + x^11) / (1 - x)^2. - Colin Barker, May 06 2018
Previous Showing 11-12 of 12 results.