cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-94 of 94 results.

A197155 Decimal expansion of the shortest distance from the x axis through (4,1) to the line y=x/2.

Original entry on oeis.org

1, 9, 4, 6, 3, 4, 6, 4, 0, 2, 3, 7, 8, 4, 8, 3, 8, 5, 6, 1, 6, 6, 4, 0, 9, 1, 1, 4, 2, 3, 0, 0, 8, 0, 6, 8, 1, 8, 5, 8, 2, 1, 0, 6, 7, 1, 1, 7, 6, 0, 3, 8, 5, 7, 0, 1, 8, 9, 2, 3, 8, 5, 0, 9, 1, 0, 4, 9, 9, 8, 9, 5, 6, 0, 1, 8, 8, 6, 8, 0, 1, 9, 1, 0, 7, 7, 4, 4, 3, 2, 0, 7, 0, 6, 5, 2, 2, 4, 1, 4
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2011

Keywords

Comments

The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197032, A197008 and A195284.

Examples

			length of Philo line:  1.94634640...
endpoint on x axis:    (4.2236, 0); see A197154
endpoint on line y=3x: (3.79888, 1.89944)
		

Crossrefs

Programs

  • Mathematica
    f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2;
    g[t_] := D[f[t], t]; Factor[g[t]]
    p[t_] :=  h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3
    m = 1/2; h = 4; k = 1;(* slop m, point (h,k) *)
    t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A197154 *)
    {N[t], 0} (* endpoint on x axis *)
    {N[k*t/(k + m*t - m*h)],
     N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=x/2 *)
    d = N[Sqrt[f[t]], 100]
    RealDigits[d]  (* A197155 *)
    Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 4.5}],
     ContourPlot[(x - h)^2 + (y - k)^2 == .002, {x, 0, 4.5}, {y, 0, 3}],
     PlotRange -> {0, 2}, AspectRatio -> Automatic]

A195285 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 3,4,5 right triangle ABC.

Original entry on oeis.org

5, 9, 7, 7, 2, 3, 3, 5, 0, 7, 5, 2, 0, 7, 4, 9, 4, 5, 7, 2, 3, 2, 0, 6, 6, 7, 8, 8, 9, 7, 7, 0, 7, 0, 6, 2, 3, 6, 6, 0, 8, 3, 2, 3, 9, 1, 5, 9, 6, 3, 0, 5, 3, 5, 1, 5, 5, 2, 1, 6, 1, 0, 7, 4, 9, 3, 3, 6, 5, 1, 8, 1, 2, 4, 9, 0, 1, 4, 8, 1, 5, 9, 4, 5, 3, 9, 0, 6, 8, 4, 6, 6, 2, 7, 9, 9, 9, 1, 2, 5
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2011

Keywords

Comments

See A195284 for a definition of Philo(ABC,I) and general discussion.

Examples

			Philo(ABC,I)=0.59772335075207494572...
		

Crossrefs

Programs

  • Mathematica
    a = 3; b = 4; c = 5;
    h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195284 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (B) A002163 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A010466 *)
    (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,I) A195285 *)

A197033 Decimal expansion of the shortest distance from the x axis through (2,1) to the line y=x.

Original entry on oeis.org

1, 8, 4, 4, 2, 7, 1, 6, 8, 1, 7, 0, 0, 1, 7, 1, 8, 6, 4, 7, 7, 9, 9, 5, 7, 7, 4, 4, 2, 7, 3, 5, 7, 0, 2, 9, 8, 4, 1, 3, 4, 8, 7, 6, 3, 3, 8, 7, 7, 0, 9, 5, 0, 9, 1, 5, 7, 4, 7, 9, 4, 0, 1, 7, 8, 6, 4, 8, 7, 6, 8, 3, 4, 3, 8, 5, 3, 8, 8, 6, 1, 2, 4, 8, 5, 0, 6, 4, 4, 7, 0, 9, 9, 7, 5, 8, 1, 8, 5, 0
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2011

Keywords

Comments

For discussions and guides to related sequences, see A197032, A197008 and A195284.

Examples

			length of Philo line:  1.8442716817001718647799577442735702984134...
endpoint on x axis:  (2.35321..., 0); see A197032
endpoint on line y=x:  (1.73898, 1.73898)
		

Crossrefs

Programs

  • Mathematica
    f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2;
    g[t_] := D[f[t], t]; Factor[g[t]]
    p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 (* root of p[t] minimizes f *)
    m = 1; h = 2; k = 1; (* m=slope; (h,k)=point *)
    t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A197032 *)
    {N[t], 0} (* lower endpoint of minimal segment [Philo line] *)
    {N[k*t/(k + m*t - m*h)],
    N[m*k*t/(k + m*t - m*h)]} (* upper endpoint *)
    d = N[Sqrt[f[t]], 100]
    RealDigits[d] (* A197033 *)
    Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 2.5}],
     ContourPlot[(x - h)^2 + (y - k)^2 == .003, {x, 0, 3}, {y, 0, 3}], PlotRange -> {0, 2}, AspectRatio -> Automatic]

A137262 Floor of sum of the first 10^n square roots.

Original entry on oeis.org

1, 22, 671, 21097, 666716, 21082008, 666667166, 21081852648, 666666671666, 21081851083600, 666666666716666, 21081851067947309, 666666666667166666, 21081851067790776685, 666666666666671666666, 21081851067789211358047, 666666666666666716666666, 21081851067789195704773173
Offset: 0

Views

Author

Cino Hilliard, Mar 12 2008

Keywords

Examples

			The first 10^0 square roots is 1. The sum of the first 10^1 square roots is 22.468278186... . So 22 is the second entry in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[Sum[Sqrt[j],{j,10^n}]];Array[a,17,0] (* James C. McMahon, May 17 2025 *)
    a[n_] := Floor[HarmonicNumber[10^n, -1/2]]; Array[a, 20, 0] (* Amiram Eldar, Jul 18 2025 *)
  • PARI
    g2(n,p=2) = for(j=0,n,s=0;for(x=0,10^j,s+=x^(1/p)); print1(floor(s)", "))

Formula

From Amiram Eldar, Jul 18 2025: (Start)
a(n) = A025224(10^n).
a(n) ~ (2/3) * 10^(3*n/2). (End)

Extensions

a(10)-a(16) from James C. McMahon, May 17 2025
a(17) from Amiram Eldar, Jul 18 2025
Previous Showing 91-94 of 94 results.