cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 143 results. Next

A197807 Decimal expansion of x>0 having x^2=3*cos(x).

Original entry on oeis.org

1, 1, 3, 0, 6, 1, 9, 0, 7, 2, 7, 7, 6, 3, 9, 4, 9, 6, 1, 2, 8, 8, 6, 5, 0, 0, 5, 8, 9, 4, 5, 4, 0, 6, 8, 7, 0, 2, 7, 8, 6, 0, 8, 7, 8, 8, 9, 6, 9, 4, 2, 4, 3, 8, 5, 4, 2, 0, 9, 1, 2, 5, 6, 4, 6, 8, 5, 8, 7, 7, 4, 5, 8, 3, 3, 4, 1, 9, 9, 5, 8, 5, 0, 5, 3, 0, 9, 6, 7, 8, 3, 5, 6, 7, 0, 6, 5, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.13061907277639496128865005894540687027860878...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 0; c = 3;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1.5, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197807 *)

A197808 Decimal expansion of x>0 having x^2 = 4*cos(x).

Original entry on oeis.org

1, 2, 0, 1, 5, 3, 8, 2, 9, 9, 3, 4, 0, 5, 7, 5, 1, 1, 1, 4, 8, 1, 5, 0, 8, 1, 6, 6, 5, 6, 8, 8, 5, 0, 4, 9, 1, 0, 6, 0, 8, 3, 5, 8, 1, 1, 0, 1, 8, 6, 0, 2, 7, 0, 4, 3, 2, 1, 1, 2, 0, 6, 0, 5, 6, 8, 0, 8, 5, 8, 4, 4, 0, 2, 1, 6, 9, 4, 5, 2, 2, 5, 8, 8, 4, 9, 1, 3, 7, 1, 2, 0, 5, 2, 8, 4, 3, 1, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x = 1.201538299340575111481508166568850491060835...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 0; c = 4;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1.5, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197808 *)

A197809 Decimal expansion of x<0 having x^2+x=2*cos(x).

Original entry on oeis.org

1, 3, 4, 0, 5, 2, 5, 3, 0, 8, 1, 9, 7, 3, 9, 8, 4, 4, 7, 8, 6, 7, 6, 0, 6, 2, 8, 4, 9, 9, 6, 0, 6, 6, 0, 9, 2, 0, 5, 8, 3, 4, 1, 8, 6, 8, 9, 3, 1, 2, 0, 4, 5, 7, 5, 5, 2, 4, 7, 3, 5, 7, 7, 3, 0, 0, 2, 1, 3, 0, 7, 8, 1, 3, 0, 4, 2, 1, 6, 6, 7, 3, 0, 3, 4, 7, 6, 9, 9, 7, 5, 6, 5, 9, 9, 9, 0, 8, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.3405253081973984478676062849960660920583...
positive:  0.7883968459929654290788209839820019122955...
		

Crossrefs

Cf. A197738.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197809 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .78, .79}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197810 *)

A197810 Decimal expansion of x>0 having x^2+x=2*cos(x).

Original entry on oeis.org

7, 8, 8, 3, 9, 6, 8, 4, 5, 9, 9, 2, 9, 6, 5, 4, 2, 9, 0, 7, 8, 8, 2, 0, 9, 8, 3, 9, 8, 2, 0, 0, 1, 9, 1, 2, 2, 9, 5, 5, 1, 8, 7, 5, 3, 5, 3, 1, 2, 0, 4, 9, 1, 8, 6, 5, 0, 5, 6, 6, 5, 9, 8, 2, 7, 0, 6, 7, 8, 7, 2, 5, 7, 2, 4, 8, 7, 8, 1, 4, 6, 0, 0, 8, 8, 9, 3, 3, 7, 6, 7, 8, 6, 9, 8, 6, 2, 8, 2
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.3405253081973984478676062849960660920583...
positive:  0.7883968459929654290788209839820019122955...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197809 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .78, .79}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197810 *)

A197811 Decimal expansion of x<0 having x^2+x=3*cos(x).

Original entry on oeis.org

1, 3, 8, 9, 4, 3, 7, 4, 5, 2, 7, 0, 4, 8, 2, 8, 3, 8, 9, 2, 9, 1, 4, 9, 8, 2, 5, 1, 4, 2, 9, 1, 8, 9, 2, 5, 5, 9, 6, 3, 3, 7, 3, 5, 7, 5, 8, 4, 7, 5, 0, 8, 3, 7, 1, 4, 1, 5, 6, 7, 2, 2, 7, 2, 9, 3, 7, 0, 4, 8, 1, 2, 4, 4, 7, 1, 1, 8, 9, 3, 8, 8, 4, 3, 6, 2, 8, 7, 1, 0, 6, 3, 2, 6, 9, 4, 2, 2, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.38943745270482838929149825142918925596337...
positive: 0.9297344303618125096887004946976108824038...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197811 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .92, .93}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197812 *)

A197812 Decimal expansion of x>0 having x^2+x=3*cos(x).

Original entry on oeis.org

9, 2, 9, 7, 3, 4, 4, 3, 0, 3, 6, 1, 8, 1, 2, 5, 0, 9, 6, 8, 8, 7, 0, 0, 4, 9, 4, 6, 9, 7, 6, 1, 0, 8, 8, 2, 4, 0, 3, 8, 8, 6, 8, 5, 5, 8, 6, 8, 9, 7, 7, 2, 0, 1, 7, 7, 2, 5, 3, 4, 9, 1, 4, 3, 6, 5, 7, 0, 7, 7, 6, 6, 8, 9, 7, 5, 9, 3, 7, 9, 1, 4, 9, 6, 7, 9, 3, 8, 5, 9, 3, 1, 2, 8, 1, 9, 4, 1, 7
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.389437452704828389291498251429189255963...
positive: 0.9297344303618125096887004946976108824038...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197811 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .92, .93}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197812 *)

A197813 Decimal expansion of x<0 having x^2+x=4*cos(x).

Original entry on oeis.org

1, 4, 2, 0, 7, 7, 6, 7, 7, 3, 1, 7, 1, 0, 0, 5, 2, 4, 9, 3, 2, 5, 0, 6, 6, 9, 4, 1, 6, 6, 1, 8, 4, 8, 8, 2, 4, 2, 4, 8, 8, 6, 0, 5, 3, 9, 6, 6, 9, 2, 4, 9, 9, 8, 8, 4, 6, 6, 5, 6, 1, 5, 0, 6, 6, 9, 5, 6, 8, 9, 4, 6, 7, 6, 7, 0, 2, 8, 3, 0, 1, 5, 3, 1, 9, 5, 3, 3, 8, 7, 0, 7, 8, 6, 5, 4, 5, 5, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.420776773171005249325066941661848824...
positive: 1.0251191119924290148461985750057832515...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 1; c = 4;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197813 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197814 *)

A197814 Decimal expansion of x>0 having x^2+x=4*cos(x).

Original entry on oeis.org

1, 0, 2, 5, 1, 1, 9, 1, 1, 1, 9, 9, 2, 4, 2, 9, 0, 1, 4, 8, 4, 6, 1, 9, 8, 5, 7, 5, 0, 0, 5, 7, 8, 3, 2, 5, 1, 5, 3, 5, 3, 8, 3, 5, 2, 1, 4, 6, 7, 3, 4, 8, 9, 4, 2, 1, 5, 9, 2, 7, 4, 5, 5, 9, 7, 6, 7, 4, 9, 2, 7, 9, 1, 0, 2, 1, 2, 6, 0, 6, 9, 3, 1, 4, 3, 6, 1, 5, 9, 8, 8, 0, 8, 4, 5, 3, 6, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.42077677317100524932506694166184882...
positive: 1.025119111992429014846198575005783251...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 1; c = 4;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1.5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197813 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197814 *)

A197815 Decimal expansion of least x having x^2-2x=-cos(x).

Original entry on oeis.org

5, 8, 9, 3, 0, 3, 2, 0, 8, 1, 5, 9, 0, 1, 2, 8, 7, 4, 7, 2, 5, 2, 2, 3, 9, 1, 9, 0, 7, 3, 8, 6, 9, 1, 8, 5, 8, 8, 9, 0, 6, 0, 9, 8, 8, 0, 5, 4, 0, 7, 0, 3, 0, 5, 5, 3, 9, 2, 1, 4, 0, 7, 5, 1, 1, 7, 1, 4, 5, 7, 1, 7, 7, 0, 6, 4, 7, 2, 4, 1, 0, 8, 8, 0, 5, 2, 2, 1, 0, 2, 0, 0, 1, 6, 9, 6, 5, 6, 7
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: 0.589303208159012874725223919073869185889...
greatest x: 2.287086177656584485337033312314491737...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = -2; c = -1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 3}]
    r1 = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197815 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197820  *)

A197820 Decimal expansion of greatest x having x^2-2x=-cos(x).

Original entry on oeis.org

2, 2, 8, 7, 0, 8, 6, 1, 7, 7, 6, 5, 6, 5, 8, 4, 4, 8, 5, 3, 3, 7, 0, 3, 3, 3, 1, 2, 3, 1, 4, 4, 9, 1, 7, 3, 7, 3, 9, 5, 7, 8, 2, 0, 7, 5, 1, 2, 9, 2, 3, 9, 8, 4, 0, 8, 2, 9, 0, 8, 4, 3, 9, 0, 0, 4, 0, 1, 4, 3, 0, 8, 6, 4, 7, 9, 6, 9, 0, 1, 9, 2, 9, 0, 5, 6, 0, 3, 8, 9, 1, 5, 4, 1, 4, 4, 7, 3, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: 0.589303208159012874725223919073869185889...
greatest x: 2.287086177656584485337033312314491737...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = -2; c = -1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 3}]
    r1 = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197815 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197820  *)
Previous Showing 11-20 of 143 results. Next