cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 143 results. Next

A197825 Decimal expansion of least x having x^2-3x=-cos(x).

Original entry on oeis.org

3, 5, 4, 4, 9, 6, 3, 6, 7, 4, 1, 3, 6, 7, 6, 7, 0, 4, 4, 7, 7, 3, 4, 5, 8, 9, 5, 9, 5, 0, 2, 7, 0, 7, 3, 3, 4, 9, 3, 4, 0, 3, 8, 7, 1, 3, 2, 9, 6, 0, 6, 8, 9, 0, 4, 8, 3, 8, 4, 1, 3, 2, 6, 3, 4, 4, 7, 5, 4, 4, 4, 3, 9, 7, 7, 4, 4, 3, 9, 6, 1, 9, 5, 8, 3, 2, 8, 8, 2, 1, 1, 2, 0, 2, 5, 4, 1, 0, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: 0.3544963674136767044773458959502707334...
greatest x: 3.2993291450362846931582114018079102408...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = -3; c = -1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 4}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197825 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197831 *)

A197831 Decimal expansion of greatest x having x^2-3x=-cos(x).

Original entry on oeis.org

3, 2, 9, 9, 3, 2, 9, 1, 4, 5, 0, 3, 6, 2, 8, 4, 6, 9, 3, 1, 5, 8, 2, 1, 1, 4, 0, 1, 8, 0, 7, 9, 1, 0, 2, 4, 0, 8, 2, 0, 3, 6, 9, 7, 1, 1, 9, 9, 1, 5, 9, 0, 3, 9, 0, 9, 4, 5, 8, 8, 0, 9, 1, 7, 6, 9, 0, 2, 0, 5, 7, 1, 3, 7, 8, 5, 5, 3, 1, 1, 5, 1, 2, 2, 5, 6, 0, 0, 0, 7, 6, 4, 3, 7, 2, 7, 1, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: 0.3544963674136767044773458959502707334...
greatest x: 3.2993291450362846931582114018079102408...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = -3; c = -1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 4}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197825 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197831 *)

A197839 Decimal expansion of least x having x^2-4x=-cos(x).

Original entry on oeis.org

2, 5, 8, 3, 9, 2, 1, 4, 4, 3, 7, 1, 5, 9, 9, 6, 7, 4, 0, 2, 7, 5, 7, 4, 2, 3, 8, 0, 7, 3, 8, 6, 0, 2, 7, 5, 2, 6, 1, 0, 1, 6, 7, 1, 1, 3, 5, 5, 3, 3, 3, 7, 1, 4, 8, 5, 1, 6, 5, 7, 1, 4, 3, 0, 0, 8, 6, 6, 0, 7, 0, 4, 4, 6, 0, 0, 0, 8, 7, 7, 8, 1, 4, 7, 0, 5, 5, 3, 8, 8, 8, 7, 4, 3, 7, 8, 8, 4, 2
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: 0.25839214437159967402757423807386027526101...
greatest x: 4.13257347075386830819844170536280612105...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = -4; c = -1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -4.2, -4.1}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197839 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 4.1, 4.2}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197840 *)

A197840 Decimal expansion of greatest x having x^2-4x=-cos(x).

Original entry on oeis.org

4, 1, 3, 2, 5, 7, 3, 4, 7, 0, 7, 5, 3, 8, 6, 8, 3, 0, 8, 1, 9, 8, 4, 4, 1, 7, 0, 5, 3, 6, 2, 8, 0, 6, 1, 2, 1, 0, 5, 5, 1, 8, 5, 3, 1, 5, 3, 8, 1, 1, 1, 8, 0, 1, 1, 7, 2, 6, 0, 4, 0, 6, 9, 4, 2, 3, 3, 7, 8, 0, 0, 3, 2, 1, 2, 4, 7, 6, 1, 8, 2, 7, 0, 6, 7, 2, 4, 2, 3, 5, 8, 4, 3, 9, 1, 8, 1, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: 0.25839214437159967402757423807386027526101...
greatest x: 4.13257347075386830819844170536280612105...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = -4; c = -1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -1, 5}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -4.2, -4.1}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197839 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, 4.1, 4.2}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197840 *)

A197841 Decimal expansion of least x having x^2+2x=cos(x).

Original entry on oeis.org

1, 8, 5, 0, 7, 1, 7, 4, 4, 1, 5, 6, 1, 9, 8, 2, 9, 0, 1, 2, 9, 7, 8, 7, 8, 8, 3, 1, 4, 5, 8, 8, 7, 4, 4, 9, 2, 3, 9, 5, 6, 3, 3, 6, 9, 1, 3, 7, 1, 4, 2, 8, 7, 9, 1, 6, 1, 7, 6, 9, 7, 0, 2, 3, 2, 0, 9, 6, 1, 4, 6, 7, 3, 5, 0, 9, 4, 6, 9, 2, 9, 6, 0, 2, 4, 5, 4, 8, 8, 9, 3, 2, 3, 3, 7, 3, 4, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -1.85071744156198290129787883145887449239...
greatest x: 0.38772212025498533427185200524832923...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.9, -1.8}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197841 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .38, .39}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197842 *)

A197842 Decimal expansion of greatest x having x^2+2x=cos(x).

Original entry on oeis.org

3, 8, 7, 7, 2, 2, 1, 2, 0, 2, 5, 4, 9, 8, 5, 3, 3, 4, 2, 7, 1, 8, 5, 2, 0, 0, 5, 2, 4, 8, 3, 2, 9, 2, 3, 6, 1, 5, 7, 7, 1, 5, 8, 9, 3, 8, 9, 2, 9, 9, 4, 3, 6, 7, 8, 2, 8, 6, 6, 4, 9, 5, 4, 7, 0, 0, 9, 3, 5, 0, 2, 5, 3, 4, 4, 9, 6, 5, 8, 5, 5, 1, 3, 2, 2, 1, 7, 3, 7, 2, 1, 6, 3, 0, 2, 6, 2, 8, 3
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -1.85071744156198290129787883145887449239...
greatest x: 0.38772212025498533427185200524832923...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.9, -1.8}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197841 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .38, .39}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197842 *)

A197843 Decimal expansion of least x having x^2+2x=2*cos(x).

Original entry on oeis.org

1, 7, 7, 3, 2, 3, 2, 1, 5, 7, 4, 9, 1, 7, 1, 6, 7, 2, 7, 0, 3, 8, 9, 9, 4, 6, 4, 1, 9, 7, 0, 8, 1, 6, 4, 1, 4, 1, 0, 2, 3, 7, 2, 3, 3, 5, 3, 6, 6, 7, 2, 8, 8, 2, 4, 4, 9, 4, 6, 2, 8, 1, 2, 1, 2, 5, 3, 7, 2, 4, 5, 4, 6, 6, 0, 4, 1, 4, 2, 7, 2, 1, 9, 2, 9, 7, 3, 7, 5, 3, 0, 9, 7, 9, 2, 6, 3, 7, 7, 5, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -1.77323215749171672703899464197081641...
greatest x: 0.620762336586614714452120247321515...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 2; c = 2;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]
    RealDigits[r1]  (* A197843 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .62, .63}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197844 *)

A197844 Decimal expansion of greatest x having x^2+2x=2*cos(x).

Original entry on oeis.org

6, 2, 0, 7, 6, 2, 3, 3, 6, 5, 8, 6, 6, 1, 4, 7, 1, 4, 4, 5, 2, 1, 2, 0, 2, 4, 7, 3, 2, 1, 5, 1, 5, 3, 7, 1, 4, 4, 3, 4, 1, 1, 7, 7, 8, 5, 8, 7, 1, 4, 0, 9, 1, 6, 4, 2, 4, 8, 3, 0, 0, 9, 3, 7, 3, 1, 1, 0, 4, 9, 0, 2, 1, 6, 0, 2, 3, 6, 8, 0, 1, 5, 1, 6, 3, 7, 1, 7, 0, 3, 1, 1, 5, 2, 5, 5, 7, 6, 2
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -1.77323215749171672703899464197081641...
greatest x: 0.620762336586614714452120247321515...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 2; c = 2;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]
    RealDigits[r1]  (* A197843 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .62, .63}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197844 *)

A197845 Decimal expansion of least x having x^2+2x=3*cos(x).

Original entry on oeis.org

1, 7, 2, 8, 0, 7, 8, 0, 8, 6, 2, 5, 3, 1, 4, 2, 1, 7, 1, 3, 9, 7, 2, 4, 5, 4, 3, 2, 4, 2, 4, 7, 6, 8, 2, 6, 7, 7, 6, 2, 0, 8, 0, 6, 2, 0, 8, 4, 3, 1, 3, 3, 5, 4, 1, 6, 2, 6, 1, 2, 4, 2, 5, 1, 3, 8, 6, 4, 1, 6, 9, 0, 4, 2, 6, 1, 7, 0, 0, 3, 8, 7, 3, 5, 0, 7, 3, 9, 8, 9, 6, 7, 6, 4, 8, 6, 2, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -1.72807808625314217139724543242476826...
greatest x: 0.773696189243809421714739053530453...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]
    RealDigits[r1]  (* A197845 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197846 *)

A197846 Decimal expansion of greatest x having x^2+2x=3*cos(x).

Original entry on oeis.org

7, 7, 3, 6, 9, 6, 1, 8, 9, 2, 4, 3, 8, 0, 9, 4, 2, 1, 7, 1, 4, 7, 3, 9, 0, 5, 3, 5, 3, 0, 4, 5, 3, 3, 3, 6, 8, 0, 5, 7, 2, 1, 2, 5, 6, 8, 2, 4, 5, 8, 2, 4, 0, 7, 9, 1, 1, 0, 4, 5, 4, 2, 4, 9, 8, 1, 2, 9, 4, 1, 0, 7, 6, 2, 5, 1, 4, 0, 0, 5, 2, 7, 0, 1, 6, 9, 0, 0, 6, 3, 8, 8, 0, 4, 0, 8, 2, 8, 2
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

See A197737 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -1.72807808625314217139724543242476826...
greatest x: 0.773696189243809421714739053530453...
		

Crossrefs

Cf. A197737.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]
    RealDigits[r1]  (* A197845 *)
    r2 = x /. FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110]
    RealDigits[r2] (* A197846 *)
Previous Showing 21-30 of 143 results. Next