cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A198899 Number of n X n 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 1211, 6907736, 423503301834, 274342896958292170, 1877611081501313948217870, 135766460737448561825230968357842
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Diagonal of A198906

Examples

			Some solutions with values 0 to 4 for n=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..2..1..0....1..2..1..2....1..2..1..2....1..0..2..0....1..0..1..0
..0..1..3..4....2..3..0..1....3..0..2..0....3..4..0..3....2..1..0..3
..3..2..0..3....4..1..2..4....4..3..1..3....2..1..2..4....1..4..1..2
		

Programs

A198901 Number of n X 3 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

2, 33, 1211, 50384, 2125425, 89793204, 3794115705, 160319061892, 6774239755817, 286243775060868, 12095158053422201, 511077834439270724, 21595464215307153225, 912510860892666556164, 38557914891188891686425
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2011

Keywords

Comments

Column 3 of A198906.

Examples

			Some solutions with values 0 to 4 for n=4:
..0..1..2....0..1..2....0..1..2....0..1..0....0..1..0....0..1..0....0..1..2
..1..0..3....1..3..1....2..3..1....1..0..2....2..3..2....2..0..3....2..3..1
..2..1..4....4..1..0....4..0..2....3..4..3....3..2..4....4..2..0....1..4..0
..4..0..3....2..0..2....0..1..3....1..2..1....2..1..0....3..0..4....3..0..4
		

Crossrefs

Cf. A198906.

Formula

Empirical: a(n) = 51*a(n-1) - 393*a(n-2) + 1013*a(n-3) - 902*a(n-4) + 232*a(n-5).
Empirical g.f.: x*(2 - 69*x + 314*x^2 - 434*x^3 + 139*x^4) / ((1 - x)*(1 - 5*x + 2*x^2)*(1 - 45*x + 116*x^2)). - Colin Barker, Mar 02 2018

A198902 Number of nX4 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

5, 380, 50384, 6907736, 948656912, 130292546801, 17895005957823, 2457786852894234, 337564362706067534, 46362726246946052884, 6367681611531782236418, 874568266109492180669275
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Column 4 of A198906

Examples

			Some solutions with values 0 to 4 for n=5
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..2..3..1....0..2..3..1....0..2..3..1....0..2..0..2....0..2..0..3
..1..0..4..0....2..3..0..4....1..0..2..0....3..1..2..1....3..0..3..4
..2..1..0..2....1..2..4..0....4..3..4..2....4..0..1..3....2..3..0..3
		

Formula

Empirical: a(n) = 163*a(n-1) -3751*a(n-2) +32097*a(n-3) -120287*a(n-4) +201471*a(n-5) -148296*a(n-6) +38604*a(n-7)

A198903 Number of n X 5 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

15, 4801, 2125425, 948656912, 423503301834, 189062985604305, 84402688527136201, 37679579867128064832, 16821155393975907014458, 7509406150309683843851949, 3352396396661126098060061297
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Column 5 of A198906.

Examples

			Some solutions with values 0 to 4 for n=4
..0..1..0..2..1....0..1..0..1..2....0..1..0..2..3....0..1..0..2..3
..1..0..2..0..2....1..0..3..4..0....1..0..2..3..4....1..0..2..1..4
..0..1..0..1..3....0..1..2..1..2....0..1..3..0..1....0..1..0..3..0
..1..0..4..2..1....1..0..3..2..3....1..0..2..1..4....1..0..3..1..4
		

Crossrefs

Cf. A198906.

Formula

Empirical: a(n) = 559*a(n-1) -54943*a(n-2) +2182857*a(n-3) -41132051*a(n-4) +348302393*a(n-5) -519526889*a(n-6) -11351340633*a(n-7) +79466721924*a(n-8) -227367989480*a(n-9) +329414183656*a(n-10) -247117199296*a(n-11) +89130224384*a(n-12) -11964372480*a(n-13).

A198904 Number of nX6 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

51, 62004, 89793204, 130292546801, 189062985604305, 274342896958292170, 398089706066811447174, 577654521153750977585383, 838214957290859115489996817, 1216305402162613228248847610489
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Column 6 of A198906

Examples

			Some solutions with values 0 to 4 for n=4
..0..1..0..2..3..4....0..1..0..2..0..3....0..1..0..2..3..0....0..1..0..2..0..3
..1..0..1..0..2..1....1..0..1..0..3..2....1..0..1..0..4..3....1..0..1..0..3..0
..0..1..0..2..1..4....0..1..0..3..4..0....0..1..0..2..3..1....0..1..0..3..0..1
..1..0..1..4..2..0....1..0..1..2..1..4....1..0..1..0..2..0....1..0..1..4..1..4
		

Formula

Empirical: a(n) = 1941*a(n-1) -806387*a(n-2) +148087843*a(n-3) -14409929271*a(n-4) +778094676063*a(n-5) -21816737058431*a(n-6) +172301552678113*a(n-7) +7343185920165785*a(n-8) -245567930834154099*a(n-9) +3173967512676632848*a(n-10) -15227320856420081570*a(n-11) -91185217544269175883*a(n-12) +1851754850894045611993*a(n-13) -13021262413927953929580*a(n-14) +53026970301996239080604*a(n-15) -137791962761820102384680*a(n-16) +234523646685947458039624*a(n-17) -259529910793881853229984*a(n-18) +179240545997964052307808*a(n-19) -69895831119161489802880*a(n-20) +11699525896373883270144*a(n-21)

A198905 Number of nX7 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

187, 804833, 3794115705, 17895005957823, 84402688527136201, 398089706066811447174, 1877611081501313948217870, 8855851690895754550489882369, 41769091588504560613470987916898
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Column 7 of A198906

Examples

			Some solutions with values 0 to 4 for n=4
..0..1..0..1..0..2..3....0..1..0..1..0..2..0....0..1..0..1..0..2..1
..1..0..1..0..1..3..2....1..0..1..0..3..0..2....1..0..1..0..3..4..3
..0..1..0..2..0..2..3....0..1..0..2..4..2..4....0..1..0..2..0..1..0
..1..0..2..0..2..4..1....1..0..2..0..2..1..3....1..0..2..0..2..0..2
		
Previous Showing 11-16 of 16 results.