cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A199186 Decimal expansion of x<0 satisfying x^2+3*x*cos(x)=3.

Original entry on oeis.org

1, 6, 3, 6, 4, 4, 3, 5, 5, 1, 9, 5, 5, 0, 4, 1, 4, 2, 2, 0, 6, 7, 5, 9, 3, 0, 3, 1, 1, 8, 7, 1, 2, 8, 2, 4, 5, 5, 9, 3, 6, 5, 4, 1, 7, 1, 8, 5, 9, 0, 2, 6, 8, 4, 2, 5, 3, 3, 4, 8, 5, 5, 7, 2, 4, 9, 6, 0, 1, 4, 7, 7, 1, 1, 7, 8, 8, 6, 4, 9, 0, 3, 3, 9, 7, 9, 7, 6, 2, 3, 7, 9, 1, 6, 2, 1, 2, 7, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.6364435519550414220675930311871282455...
positive:  3.56968633396230393049792896687800143343...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199186 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.56, 3.57}, WorkingPrecision -> 110]
    RealDigits[r]  (*  A199187 *)

A199187 Decimal expansion of x>0 satisfying x^2+3*x*cos(x)=3.

Original entry on oeis.org

3, 5, 6, 9, 6, 8, 6, 3, 3, 3, 9, 6, 2, 3, 0, 3, 9, 3, 0, 4, 9, 7, 9, 2, 8, 9, 6, 6, 8, 7, 8, 0, 0, 1, 4, 3, 3, 4, 3, 4, 9, 3, 8, 9, 9, 7, 2, 0, 6, 3, 2, 6, 5, 0, 2, 4, 3, 9, 7, 8, 8, 8, 1, 5, 6, 3, 8, 6, 8, 7, 2, 9, 5, 7, 1, 1, 8, 8, 7, 9, 7, 1, 7, 0, 4, 1, 6, 8, 2, 2, 9, 6, 8, 4, 3, 1, 2, 3, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.6364435519550414220675930311871282455...
positive:  3.56968633396230393049792896687800143343...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199186 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.56, 3.57}, WorkingPrecision -> 110]
    RealDigits[r]  (*  A199187 *)

A199188 Decimal expansion of x < 0 satisfying 2*x^2+x*cos(x) = 1.

Original entry on oeis.org

8, 8, 3, 3, 3, 0, 1, 9, 7, 1, 9, 5, 8, 9, 1, 9, 3, 8, 9, 2, 5, 8, 9, 6, 4, 5, 0, 8, 8, 5, 6, 7, 7, 1, 0, 7, 2, 3, 5, 0, 5, 9, 0, 0, 8, 8, 4, 2, 3, 1, 8, 8, 2, 3, 1, 6, 6, 7, 6, 3, 6, 6, 7, 3, 1, 6, 3, 4, 3, 1, 9, 5, 8, 7, 3, 3, 2, 2, 6, 1, 2, 9, 9, 8, 7, 3, 3, 1, 6, 8, 8, 3, 1, 9, 8, 3, 3, 3, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -0.883330197195891938925896450885677107...
positive:  0.522945946113111737247623836359811237...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 2; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.84, -.83}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199188 *)
    r = x /. FindRoot[f[x] == g[x], {x, .52, .53}, WorkingPrecision -> 110]
    RealDigits[r]  (*  A199189 *)

Extensions

Offset corrected by Georg Fischer, Aug 02 2021

A199189 Decimal expansion of x>0 satisfying 2*x^2+x*cos(x)=1.

Original entry on oeis.org

5, 2, 2, 9, 4, 5, 9, 4, 6, 1, 1, 3, 1, 1, 1, 7, 3, 7, 2, 4, 7, 6, 2, 3, 8, 3, 6, 3, 5, 9, 8, 1, 1, 2, 3, 7, 1, 3, 9, 7, 3, 4, 5, 2, 5, 8, 0, 0, 2, 6, 0, 5, 9, 9, 0, 2, 3, 1, 1, 5, 7, 6, 4, 5, 8, 7, 4, 4, 7, 0, 8, 0, 0, 7, 9, 9, 6, 3, 1, 5, 6, 5, 3, 7, 1, 0, 3, 2, 7, 5, 4, 8, 5, 0, 6, 5, 8, 0, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -0.883330197195891938925896450885677107...
positive:  0.522945946113111737247623836359811237139...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 2; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.84, -.83}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199188 *)
    r = x /. FindRoot[f[x] == g[x], {x, .52, .53}, WorkingPrecision -> 110]
    RealDigits[r]  (*  A199189 *)

A199172 Decimal expansion of x<0 satisfying x^2+x*cos(x)=2.

Original entry on oeis.org

1, 4, 6, 6, 9, 7, 8, 3, 0, 5, 3, 9, 7, 1, 2, 3, 5, 6, 8, 4, 1, 9, 8, 1, 4, 1, 8, 4, 7, 8, 0, 4, 4, 4, 3, 1, 8, 9, 1, 2, 0, 2, 2, 5, 9, 1, 2, 6, 4, 3, 2, 3, 3, 8, 6, 6, 0, 8, 0, 5, 7, 9, 9, 8, 2, 4, 7, 9, 0, 7, 3, 7, 0, 7, 2, 7, 4, 7, 7, 3, 6, 9, 5, 1, 1, 2, 1, 2, 2, 2, 7, 9, 9, 9, 9, 4, 2, 4, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.4669783053971235684198141847804443...
positive:  1.2766713679407605540915074904412102...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199172 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.27, .28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199173 *)

A199173 Decimal expansion of x>0 satisfying x^2+x*cos(x)=2.

Original entry on oeis.org

1, 2, 7, 6, 6, 7, 1, 3, 6, 7, 9, 4, 0, 7, 6, 0, 5, 5, 4, 0, 9, 1, 5, 0, 7, 4, 9, 0, 4, 4, 1, 2, 1, 0, 2, 7, 8, 3, 4, 0, 0, 2, 4, 6, 4, 7, 3, 4, 5, 6, 7, 6, 0, 6, 1, 5, 6, 6, 2, 8, 7, 6, 7, 4, 1, 2, 5, 9, 6, 3, 2, 8, 0, 1, 0, 9, 7, 6, 3, 1, 1, 9, 2, 3, 4, 4, 1, 8, 2, 9, 4, 3, 2, 4, 2, 4, 5, 7, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.4669783053971235684198141847804443...
positive:  1.27667136794076055409150749044121027834...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199172 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.27, .28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199173 *)

A199174 Decimal expansion of x < 0 satisfying x^2 + x*cos(x) = 3.

Original entry on oeis.org

1, 6, 7, 8, 9, 2, 9, 7, 6, 3, 4, 9, 1, 0, 9, 4, 5, 1, 9, 5, 9, 3, 3, 8, 3, 2, 0, 1, 1, 6, 3, 4, 3, 2, 9, 9, 8, 5, 9, 3, 3, 0, 5, 0, 1, 6, 7, 2, 8, 7, 8, 3, 6, 4, 3, 7, 0, 8, 7, 6, 3, 6, 2, 7, 1, 0, 4, 2, 4, 6, 7, 1, 9, 7, 2, 8, 5, 9, 8, 6, 2, 7, 2, 6, 2, 8, 3, 8, 6, 4, 2, 6, 8, 1, 6, 2, 9, 3, 8, 8, 9, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.67892976349109451959338320116343299...
positive:  1.90253038503823570345779582773972676...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199174 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.90, 1.91}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199175 *)

Extensions

a(84) onwards corrected by Georg Fischer, Aug 03 2021

A199175 Decimal expansion of x>0 satisfying x^2+x*cos(x)=3.

Original entry on oeis.org

1, 9, 0, 2, 5, 3, 0, 3, 8, 5, 0, 3, 8, 2, 3, 5, 7, 0, 3, 4, 5, 7, 7, 9, 5, 8, 2, 7, 7, 3, 9, 7, 2, 6, 7, 6, 1, 2, 7, 8, 9, 4, 2, 9, 0, 5, 3, 3, 4, 2, 2, 1, 0, 6, 0, 4, 5, 0, 4, 0, 1, 9, 1, 2, 0, 5, 8, 8, 0, 3, 8, 0, 5, 8, 5, 3, 8, 0, 4, 9, 5, 5, 8, 4, 2, 9, 9, 7, 5, 1, 4, 1, 6, 2, 8, 9, 5, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.67892976349109451959338320116343299...
positive:  1.90253038503823570345779582773972676...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199174 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.90, 1.91}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199175 *)

A199176 Decimal expansion of x<0 satisfying x^2+2*x*cos(x)=1.

Original entry on oeis.org

1, 3, 0, 1, 2, 0, 1, 7, 3, 3, 1, 4, 1, 9, 1, 1, 4, 0, 0, 7, 9, 8, 3, 9, 7, 3, 6, 4, 4, 4, 0, 2, 6, 4, 5, 2, 2, 1, 9, 1, 3, 0, 0, 6, 5, 7, 4, 3, 0, 3, 0, 4, 8, 9, 2, 6, 9, 4, 6, 0, 5, 7, 9, 4, 6, 6, 0, 3, 7, 1, 9, 0, 5, 4, 5, 5, 9, 6, 8, 1, 3, 3, 2, 4, 3, 2, 9, 6, 9, 4, 8, 2, 3, 0, 7, 2, 9, 2, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.301201733141911400798397364440264522...
positive:  0.444416809391791633213083601823107078...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199176 *)
    r = x /. FindRoot[f[x] == g[x], {x, .44, .45}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199177 *)

A199177 Decimal expansion of x>0 satisfying x^2+2*x*cos(x)=1.

Original entry on oeis.org

4, 4, 4, 4, 1, 6, 8, 0, 9, 3, 9, 1, 7, 9, 1, 6, 3, 3, 2, 1, 3, 0, 8, 3, 6, 0, 1, 8, 2, 3, 1, 0, 7, 0, 7, 8, 8, 3, 9, 6, 2, 6, 4, 4, 0, 4, 8, 5, 6, 5, 0, 9, 3, 4, 6, 9, 5, 6, 5, 6, 5, 0, 8, 2, 7, 2, 9, 0, 9, 1, 3, 0, 3, 8, 3, 9, 2, 8, 1, 8, 7, 7, 7, 0, 7, 1, 9, 3, 0, 4, 6, 0, 2, 6, 2, 5, 5, 7, 9
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.301201733141911400798397364440264522...
positive:  0.444416809391791633213083601823107078...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199176 *)
    r = x /. FindRoot[f[x] == g[x], {x, .44, .45}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199177 *)
Previous Showing 11-20 of 53 results. Next