cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A199437 Decimal expansion of x>0 satisfying x^2+3*x*sin(x)=3*cos(x).

Original entry on oeis.org

7, 6, 3, 5, 7, 5, 4, 4, 7, 3, 0, 8, 3, 7, 7, 0, 5, 4, 7, 7, 9, 3, 3, 8, 9, 0, 7, 5, 5, 9, 2, 8, 4, 4, 3, 4, 1, 0, 5, 1, 9, 0, 3, 6, 2, 8, 0, 6, 7, 1, 1, 5, 4, 4, 4, 5, 8, 7, 1, 1, 6, 3, 1, 2, 9, 9, 3, 1, 2, 1, 8, 0, 0, 5, 0, 0, 6, 8, 3, 0, 1, 0, 8, 1, 2, 9, 9, 9, 8, 7, 4, 3, 6, 7, 0, 1, 0, 1, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.763575447308377054779338907559284434105190362...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .76, .77}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199437 *)

A199438 Decimal expansion of x>0 satisfying 2*x^2+x*sin(x)=cos(x).

Original entry on oeis.org

5, 3, 9, 1, 4, 3, 6, 0, 7, 0, 3, 1, 4, 0, 4, 1, 0, 6, 4, 8, 7, 9, 4, 6, 0, 7, 0, 9, 9, 5, 5, 2, 3, 7, 2, 1, 2, 7, 0, 6, 0, 6, 8, 1, 4, 6, 9, 8, 9, 7, 5, 3, 8, 4, 0, 5, 8, 1, 4, 4, 5, 3, 7, 7, 4, 9, 3, 8, 0, 5, 3, 0, 3, 9, 4, 5, 6, 7, 7, 4, 0, 0, 7, 3, 5, 7, 8, 1, 4, 2, 0, 5, 3, 3, 4, 9, 7, 1, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.539143607031404106487946070995523721270...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .53, .54}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199438 *)

A199439 Decimal expansion of x>0 satisfying 2*x^2+x*sin(x)=2*cos(x).

Original entry on oeis.org

7, 1, 8, 5, 2, 7, 1, 4, 8, 7, 1, 1, 1, 8, 8, 8, 2, 1, 1, 4, 5, 3, 1, 2, 5, 7, 9, 7, 1, 8, 2, 6, 8, 8, 4, 7, 6, 3, 1, 0, 1, 6, 9, 4, 2, 9, 3, 9, 1, 3, 0, 8, 5, 1, 0, 4, 8, 5, 2, 5, 6, 4, 0, 5, 7, 1, 5, 5, 6, 0, 6, 3, 8, 0, 0, 9, 5, 5, 5, 5, 9, 1, 5, 1, 2, 3, 8, 8, 4, 6, 9, 0, 7, 1, 0, 9, 5, 2, 9
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.718527148711188821145312579718268847631016...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .71, .72}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199439 *)

A199440 Decimal expansion of x>0 satisfying 2*x^2+x*sin(x)=3*cos(x).

Original entry on oeis.org

8, 3, 5, 0, 1, 4, 6, 3, 2, 3, 2, 3, 7, 3, 2, 8, 8, 8, 3, 8, 6, 2, 0, 6, 1, 1, 2, 3, 1, 6, 9, 7, 4, 4, 2, 1, 8, 5, 3, 4, 3, 5, 9, 0, 1, 0, 7, 3, 3, 8, 3, 2, 1, 8, 0, 9, 7, 2, 5, 0, 1, 0, 3, 1, 8, 9, 3, 2, 9, 4, 0, 0, 1, 3, 3, 6, 0, 9, 5, 6, 6, 3, 5, 6, 8, 9, 4, 6, 6, 1, 4, 6, 7, 9, 2, 1, 5, 7, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.83501463232373288838620611231697442185343590...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 1; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .83, .84}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199440 *)

A199441 Decimal expansion of x>0 satisfying 2*x^2+2*x*sin(x)=cos(x).

Original entry on oeis.org

4, 7, 5, 8, 6, 6, 7, 2, 9, 0, 6, 6, 6, 2, 1, 5, 0, 2, 4, 7, 2, 6, 1, 5, 9, 3, 5, 6, 1, 9, 9, 6, 7, 8, 8, 9, 6, 8, 0, 2, 4, 4, 2, 6, 3, 8, 8, 7, 0, 0, 4, 2, 3, 3, 5, 0, 8, 3, 9, 5, 3, 4, 2, 6, 5, 5, 1, 3, 6, 2, 4, 0, 7, 5, 2, 8, 5, 1, 4, 0, 3, 7, 9, 4, 5, 4, 5, 3, 1, 3, 0, 6, 4, 7, 2, 6, 0, 4, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.4758667290666215024726159356199678896802442...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 2; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .47, .48}, WorkingPrecision -> 110]
    RealDigits[r] (* A199441 *)

A199442 Decimal expansion of x>0 satisfying 2*x^2+2*x*sin(x)=3*cos(x).

Original entry on oeis.org

7, 5, 6, 3, 2, 1, 4, 3, 2, 0, 9, 5, 2, 5, 4, 7, 4, 4, 3, 7, 8, 7, 9, 7, 4, 2, 5, 2, 5, 0, 7, 5, 4, 2, 5, 4, 9, 5, 3, 9, 8, 0, 4, 4, 8, 3, 7, 6, 1, 6, 3, 1, 2, 5, 4, 6, 4, 8, 6, 0, 0, 5, 0, 0, 8, 1, 7, 4, 1, 7, 7, 2, 2, 0, 3, 0, 1, 6, 9, 9, 9, 8, 4, 2, 9, 2, 7, 4, 2, 5, 0, 0, 5, 3, 6, 1, 6, 6, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.756321432095254744378797425250754254953980...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 2; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .75, .76}, WorkingPrecision -> 110]
    RealDigits[r] (* A199442 *)

A199443 Decimal expansion of x>0 satisfying 2*x^2+3*x*sin(x)=cos(x).

Original entry on oeis.org

4, 3, 0, 3, 0, 7, 4, 4, 1, 9, 2, 1, 5, 3, 5, 2, 9, 7, 9, 2, 1, 6, 4, 5, 9, 0, 1, 9, 0, 4, 2, 7, 5, 9, 0, 4, 5, 0, 1, 3, 7, 8, 7, 7, 7, 3, 6, 0, 7, 0, 8, 5, 0, 2, 8, 9, 8, 9, 6, 3, 5, 9, 6, 2, 9, 6, 3, 7, 0, 1, 6, 3, 0, 0, 9, 0, 4, 2, 3, 8, 5, 7, 6, 1, 4, 2, 2, 2, 2, 4, 1, 0, 0, 1, 5, 5, 6, 4, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.430307441921535297921645901904275904501378777...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 3; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .43, .44}, WorkingPrecision -> 110]
    RealDigits[r] (* A199443 *)

A199444 Decimal expansion of x>0 satisfying 2*x^2+3*x*sin(x)=2*cos(x).

Original entry on oeis.org

5, 8, 7, 1, 0, 8, 8, 2, 9, 4, 7, 9, 1, 6, 5, 5, 3, 0, 5, 6, 0, 6, 1, 9, 9, 2, 5, 3, 0, 3, 2, 0, 0, 3, 5, 5, 8, 1, 1, 5, 8, 5, 2, 3, 3, 6, 9, 5, 9, 3, 2, 8, 8, 8, 3, 0, 8, 9, 7, 5, 8, 8, 4, 3, 9, 1, 3, 1, 8, 9, 8, 2, 0, 2, 9, 7, 1, 0, 2, 9, 6, 9, 9, 6, 6, 2, 0, 4, 7, 9, 2, 3, 6, 0, 2, 9, 9, 7, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.587108829479165530560619925303200355811...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 3; c = 2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110]
    RealDigits[r] (* A199444 *)

A199445 Decimal expansion of x>0 satisfying 2*x^2+3*x*sin(x)=3*cos(x).

Original entry on oeis.org

6, 9, 5, 3, 5, 3, 4, 7, 3, 9, 9, 3, 8, 2, 9, 9, 4, 0, 1, 2, 0, 3, 8, 1, 3, 8, 5, 2, 4, 6, 4, 8, 8, 6, 1, 9, 3, 2, 8, 9, 2, 6, 7, 7, 1, 6, 8, 1, 8, 4, 6, 9, 4, 6, 1, 2, 9, 3, 2, 9, 7, 7, 9, 6, 6, 6, 2, 5, 2, 9, 3, 7, 6, 5, 8, 5, 1, 6, 6, 9, 6, 1, 8, 0, 6, 1, 9, 2, 6, 4, 7, 0, 0, 7, 1, 0, 7, 7, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.695353473993829940120381385246488619328926771...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 2; b = 3; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .69, .70}, WorkingPrecision -> 110]
    RealDigits[r] (* A199445 *)

A199446 Decimal expansion of x>0 satisfying 3*x^2+x*sin(x)=cos(x).

Original entry on oeis.org

4, 7, 3, 8, 4, 7, 9, 7, 1, 2, 6, 3, 7, 7, 7, 4, 3, 0, 9, 9, 9, 8, 0, 1, 5, 8, 7, 1, 1, 4, 4, 2, 5, 9, 8, 5, 9, 1, 1, 6, 7, 1, 8, 0, 1, 2, 0, 4, 5, 3, 1, 8, 9, 1, 0, 6, 3, 0, 9, 0, 7, 5, 6, 5, 3, 7, 7, 8, 9, 0, 7, 4, 6, 2, 3, 3, 8, 7, 8, 0, 8, 9, 0, 8, 2, 9, 1, 7, 4, 3, 0, 2, 8, 8, 7, 9, 8, 8, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.47384797126377743099980158711442598591167180120...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 3; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .47, .48}, WorkingPrecision -> 110]
    RealDigits[r] (* A199446 *)
Previous Showing 11-20 of 56 results. Next